

Exercise 1:

1)

a) In a mode of pulsation ω : $x(t) = A\cos(\omega t + \varphi)$ and $\theta(t) = B\cos(\omega t + \varphi)$

Substituting into the homogeneous system of equations.

$$\ddot{x} + 10x - \theta = 0$$

$$\ddot{\theta} + 10\theta - x = 0$$

We obtain

$$(10 - \omega^2)A - B = 0 \quad (1)$$

$$-A + (10 - \omega^2)B = 0 \quad (2)$$

$$\begin{vmatrix} (10 - \omega^2) & -1 \\ -1 & (10 - \omega^2) \end{vmatrix} \cdot \begin{bmatrix} A \\ B \end{bmatrix} = 0$$

The values of ω are the roots of the equation :

$$\mathcal{D} = \begin{vmatrix} 10 - \omega^2 & -1 \\ -1 & 10 - \omega^2 \end{vmatrix} = (10 - \omega^2)^2 - 1 = (11 - \omega^2)(9 - \omega^2) = 0$$

$$\Rightarrow \omega_1 = \sqrt{11} \frac{\text{rad}}{\text{s}} \text{ et } \omega_2 = \sqrt{9} = 3 \frac{\text{rad}}{\text{s}} \quad \text{The natural frequencies}$$

$$x_h = A_1 \cos(\omega_1 t + \varphi_1) + A_2 \cos(\omega_2 t + \varphi_2)$$

$$\theta_h = B_1 \cos(\omega_1 t + \varphi_1) + B_2 \cos(\omega_2 t + \varphi_2)$$

b) $F(t) = F_0 \cos \omega_{ex} t \Rightarrow x_p(t) = a \cos(\omega_{ex} t + \alpha_1)$ et $\theta(t) = b \cos(\omega_{ex} t + \alpha_2)$

Let's find a, b α_1 et α_2 , and using the complex method.

$$\bar{x}(t) = \bar{a} e^{j\omega_{ex} t} = a e^{j\alpha_1} e^{j\omega_{ex} t} \quad \bar{a} = a e^{j\alpha_1}$$

$$\bar{\theta}(t) = \bar{b} e^{j\omega_{ex} t} = a e^{j\alpha_2} e^{j\omega_{ex} t} \quad \bar{b} = b e^{j\alpha_2}$$

$$F(t) = \mathcal{R}(F_0 e^{j\omega_{ex} t})$$

By substituting into the system of equations, we obtain :

$$(10 - \omega_{ex}^2)\bar{a} - \bar{b} = F_0$$

$$-\bar{a} + (10 - \omega_{ex}^2)\bar{b} = 0$$

\bar{a} and \bar{b} to be determined using Cramer's rule. We have a system of two equations with two unknowns:

The principal determinant \mathfrak{D}_p :

$$\mathfrak{D}_p = \begin{vmatrix} (10 - \omega_{ex}^2) & -1 \\ -1 & (10 - \omega_{ex}^2) \end{vmatrix}$$

$$\bar{a} = \frac{\begin{vmatrix} F_0 & -1 \\ 0 & (10 - \omega_{ex}^2) \end{vmatrix}}{\mathfrak{D}_p} = \frac{(10 - \omega_{ex}^2)F_0}{\mathfrak{D}_p} = \frac{(10 - \omega_{ex}^2)F_0}{(10 - \omega_{ex}^2)^2 - 1}$$

$$\bar{b} = \frac{\begin{vmatrix} (10 - \omega_{ex}^2) & F_0 \\ -1 & 0 \end{vmatrix}}{\mathfrak{D}_p} = \frac{F_0}{\mathfrak{D}_p} = \frac{F_0}{(10 - \omega_{ex}^2)^2 - 1}$$

$$a = |\bar{a}|$$

$$b = |\bar{b}|$$

$$\alpha_1 = \alpha_2 = 0$$

$$ae^{j\alpha_1} = a(\cos\alpha_1 + j\sin\alpha_1) = a(\arg(z_1) - \arg(z_2))$$

The forced oscillations can be expressed as:

$$x_p(t) = a\cos(\omega_{ex}t + \alpha_1) \text{ avec } a = |\bar{a}| \text{ et } \alpha_1 = \arg\bar{a}$$

$$\theta_p(t) = b\cos(\omega_{ex}t + \alpha_2) \text{ avec } b = |\bar{b}| \text{ et } \alpha_2 = \arg\bar{b}$$

When a and b are real, the forced oscillations can be expressed as:

$$x_p(t) = a\cos(\omega_{ex}t) = \frac{(10 - \omega_{ex}^2)F_0}{(10 - \omega_{ex}^2)^2 - 1} \cos(\omega_{ex}t)$$

$$\theta_p(t) = b\cos(\omega_{ex}t) = \frac{F_0}{(10 - \omega_{ex}^2)^2 - 1} \cos(\omega_{ex}t)$$

c) The general expressions for $x_g(t)$ et $\theta_g(t)$:

$$x_g(t) = x_h + x_p = A_1 \cos(\omega_1 t + \varphi_1) + A_2 \cos(\omega_2 t + \varphi_2) + a\cos(\omega_{ex}t)$$

$$\theta_g(t) = \theta_h + \theta_p = B_1 \cos(\omega_1 t + \varphi_1) + B_2 \cos(\omega_2 t + \varphi_2) + b\cos(\omega_{ex}t)$$

From equation (1), we express B in terms of A : $(10 - \omega^2)A - B = 0$ on $B = (10 - \omega^2)A$

$$B_1 = (10 - \omega_1^2)A_1 = (10 - 11)A_1 = -A_1$$

$$B_2 = (10 - \omega_2^2)A_2 = (10 - 9)A_2 = A_2$$

$$\begin{cases} x_g(t) = A_1 \cos(\sqrt{11}t + \varphi_1) + A_2 \cos(3t + \varphi_2) + \frac{(10 - \omega_{ex}^2)F_0}{(10 - \omega_{ex}^2)^2 - 1} \cos(\omega_{ex}t) \\ \theta_g(t) = -A_1 \cos(\sqrt{11}t + \varphi_1) + A_2 \cos(3t + \varphi_2) + \frac{F_0}{(10 - \omega_{ex}^2)^2 - 1} \cos(\omega_{ex}t) \end{cases}$$

Exercise 2:

First method:

The torques' moments $-C\theta_1 \vec{K}$ and $-C\theta_2 \vec{K}$, where \vec{K} is the unit vector directed upward.

$$\vec{F}_1 = -ka(\theta_1 - \theta_2) \vec{t}$$

$$\vec{F}_2 = -ka(\theta_2 - \theta_1) \vec{t}$$

where the angles $\begin{cases} \theta_1 \\ \theta_2 \end{cases}$ are very small.

$$J\ddot{\theta} \vec{K} = \text{Sum of the moments of forces with respect to the rotation axis} = \sum \vec{M}(\vec{F}_{ex}) \cdot \vec{K}$$

$$\vec{M}(\vec{F}_1) = \overrightarrow{O_1 A} \wedge \vec{F}_1 = 0_1 A \cdot ka(\theta_1 - \theta_2) \sin\left(\frac{\pi}{2} - \theta_1\right) \vec{K}$$

$$\vec{M}(\vec{F}_2) = \overrightarrow{O_2 B} \wedge \vec{F}_1 = 0_2 B \cdot ka(\theta_2 - \theta_1) \sin\left(\frac{\pi}{2} - \theta_2\right) \vec{K}$$

$$\sin\left(\frac{\pi}{2} - \theta_1\right) = \cos\theta_1 \approx 1$$

$$\sin\left(\frac{\pi}{2} - \theta_2\right) = \cos\theta_2 \approx 1$$

$$\begin{cases} J\ddot{\theta}_1 = -C\theta_1 - ka^2(\theta_1 - \theta_2) = -(C + ka^2)\theta_1 + ka^2\theta_2 \\ J\ddot{\theta}_2 = -C\theta_2 - ka^2(\theta_2 - \theta_1) = -(C + ka^2)\theta_2 + ka^2\theta_1 \end{cases}$$

$$k = 5, \quad C = 90, \quad J = 1 \quad \text{et} \quad a = 2$$

The equations of motion are written as

$$\begin{cases} \ddot{\theta}_1 + 110\theta_1 - 20\theta_2 = 0 \\ \ddot{\theta}_2 + 110\theta_2 - 20\theta_1 = 0 \end{cases}$$

In a mode with pulsation ω , the solutions take the form:

$$\theta_1 = A \cos(\omega t + \varphi)$$

$$\theta_2 = B \cos(\omega t + \varphi)$$

$$\begin{cases} (110 - \omega^2)A - 20B = 0 \\ -20A + (110 - \omega^2)B = 0 \end{cases}$$

The natural frequencies are the roots of the equation:

$$\begin{vmatrix} 110 - \omega^2 & -20 \\ -20 & 110 - \omega^2 \end{vmatrix} = (110 - \omega^2)^2 - 20^2 = 0$$

$$(110 - \omega^2 + 20)(110 - \omega^2 - 20) = 0$$

$$(130 - \omega^2)(90 - \omega^2) = 0$$

$$\omega_1 = \sqrt{130} = 11,402 \text{ rad/s} \quad \text{et} \quad \omega_2 = \sqrt{90} = 9,487 \text{ rad/s}$$

Second method:

$$\begin{aligned}\mathcal{L} &= T - V \\ T &= \frac{1}{2} J \dot{\theta}_1^2 + \frac{1}{2} J \dot{\theta}_2^2 \\ V &= \frac{1}{2} C \theta_1^2 + \frac{1}{2} C \theta_2^2 + \frac{1}{2} k(a\theta_1 - a\theta_2)^2\end{aligned}$$

with $C = k_t$, the torsional constant

$$\begin{aligned}\mathcal{L} &= \frac{1}{2} J \dot{\theta}_1^2 + \frac{1}{2} J \dot{\theta}_2^2 - \frac{1}{2} C \theta_1^2 - \frac{1}{2} C \theta_2^2 - \frac{1}{2} k(a\theta_1 - a\theta_2)^2 \\ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}_1} \right) - \frac{\partial \mathcal{L}}{\partial \theta_1} &= 0 \quad (1) \\ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}_2} \right) - \frac{\partial \mathcal{L}}{\partial \theta_2} &= 0 \quad (2)\end{aligned}$$

$$\begin{aligned}\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}_1} \right) - \frac{\partial \mathcal{L}}{\partial \theta_1} &= 0 \quad J \ddot{\theta}_1 + (C + ka^2) \theta_1 - ka^2 \theta_2 = 0 \\ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}_2} \right) - \frac{\partial \mathcal{L}}{\partial \theta_2} &= 0 \quad J \ddot{\theta}_2 + (C + ka^2) \theta_2 - ka^2 \theta_1 = 0\end{aligned}$$

In a mode with pulsation ω , the solutions take the form:

$$\begin{aligned}\theta_1 &= A \cos(\omega t + \varphi) \\ \theta_2 &= B \cos(\omega t + \varphi) \\ \begin{cases} (110 - \omega^2)A - 20B = 0 \\ -20A + (110 - \omega^2)B = 0 \end{cases}\end{aligned}$$

The natural frequencies are the roots of the equation:

$$\begin{vmatrix} 110 - \omega^2 & -20 \\ -20 & 110 - \omega^2 \end{vmatrix} = (110 - \omega^2)^2 - 20^2 = 0$$

$$(110 - \omega^2 + 20)(110 - \omega^2 - 20) = 0$$

$$(130 - \omega^2)(90 - \omega^2) = 0$$

$$\omega_1 = \sqrt{130} = 11,402 \text{ rad/s} \quad \text{et} \quad \omega_2 = \sqrt{90} = 9,487 \text{ rad/s}$$

Exercise 3:

a)- Equations of motion of the system

Let the displacements of block 1, block 2 and block 3 from their equilibrium positions be x_1, x_2 and x_3 , respectively, each positive to the right. Our goal is to find the differential equations of motion of each block and then solve them to find $x_1(t), x_2(t)$ and $x_3(t)$. The Lagrangian of the system is: $\mathcal{L} = T - V$

with kinetic energy is: $T = \frac{1}{2}m\dot{x}_1^2 + \frac{1}{2}m\dot{x}_2^2 + \frac{1}{2}m\dot{x}_3^2$

And potential energy is : $V = \frac{1}{2}kx_1^2 + \frac{1}{2}k(x_2 - x_1)^2 + \frac{1}{2}k(x_3 - x_2)^2 + \frac{1}{2}kx_3^2$

The system is in translational motion along the x-axis and has three degrees of freedom x_1, x_2 and x_3 so Lagrange's equations give (Application of Lagrange's equations leads to):

$$\begin{cases} \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}_1}\right) - \frac{\partial \mathcal{L}}{\partial x_1} = 0 \\ \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}_2}\right) - \frac{\partial \mathcal{L}}{\partial x_2} = 0 \\ \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}_3}\right) - \frac{\partial \mathcal{L}}{\partial x_3} = 0 \end{cases} \quad \begin{matrix} (1) \\ (2) \\ (3) \end{matrix}$$

The equations of motion

$$\begin{cases} m\ddot{x}_1 + kx_1 - k(x_2 - x_1) = 0 \\ m\ddot{x}_2 + k(x_2 - x_1) - k(x_3 - x_2) = 0 \\ m\ddot{x}_3 + k(x_3 - x_2) + kx_3 = 0 \end{cases} \Rightarrow \begin{cases} m\ddot{x}_1 + 2kx_1 - kx_2 = 0 \\ m\ddot{x}_2 + 2kx_2 - kx_1 - kx_3 = 0 \\ m\ddot{x}_3 + 2kx_3 - kx_2 = 0 \end{cases} \quad \begin{matrix} (1) \\ (2) \\ (3) \end{matrix}$$

b)- Natural vibration frequencies of the system.

In a normal mode, by definition each block oscillates with the same frequency, so we can simply try the solutions:

$$\begin{array}{lll} x_1(t) = A \cos(\omega t + \varphi) & / & \ddot{x}_1 = -\omega^2 x_1 \\ x_2(t) = B \cos(\omega t + \varphi) & / & \ddot{x}_2 = -\omega^2 x_2 \\ x_3(t) = C \cos(\omega t + \varphi) & / & \ddot{x}_3 = -\omega^2 x_3 \end{array}$$

with the same frequency for each.

By substituting these solutions and their second derivatives into equations (1), (2) and (3), we find:

$$\begin{cases} -m\omega^2 A \cos(\omega t + \varphi) + 2kA \cos(\omega t + \varphi) - kB \cos(\omega t + \varphi) = 0 \\ -m\omega^2 B \cos(\omega t + \varphi) + 2kB \cos(\omega t + \varphi) - kA \cos(\omega t + \varphi) - kC \cos(\omega t + \varphi) = 0 \\ -m\omega^2 C \cos(\omega t + \varphi) + 2kC \cos(\omega t + \varphi) - kB \cos(\omega t + \varphi) = 0 \end{cases}$$

$$\begin{cases} (2k - m\omega^2)A - kB = 0 \\ -kA + (2k - m\omega^2)B - kC = 0 \\ -kB + (2k - m\omega^2)C = 0 \end{cases}' \quad \begin{matrix} (1)' \\ (2)' \\ (3)' \end{matrix}$$

Which in matrix form becomes

$$\begin{pmatrix} (2k - m\omega^2) & -k & 0 \\ -k & (2k - m\omega^2) & -k \\ 0 & -k & (2k - m\omega^2) \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} = 0$$

Which have a nontrivial solution only if the determinant of the coefficient matrix is zero. That is, the secular equation is:

$$\det_{sy} = \begin{vmatrix} (2k - m\omega^2) & -k & 0 \\ -k & (2k - m\omega^2) & -k \\ 0 & -k & (2k - m\omega^2) \end{vmatrix}$$

Expanding about the top row,

$$\begin{aligned} \det_{sy} &= (2k - m\omega^2)[(2k - m\omega^2)^2 - k^2] + k[-k(2k - m\omega^2)] \\ &= (2k - m\omega^2)[(2k - m\omega^2) - 2k^2] \end{aligned}$$

Factoring,

$$= (2k - m\omega^2)[(2k - m\omega^2) - \sqrt{2}k][(2k - m\omega^2) + \sqrt{2}k] = 0$$

The product of a linear and a quadratic equation in ω^2 , with altogether three solutions. The first factor is zero if

$$\Rightarrow 2k - m\omega^2 = 0 \Rightarrow \omega_1 = \sqrt{\frac{2k}{m}}$$

The second factor is zero if $[(2k - m\omega^2) - \sqrt{2}k][(2k - m\omega^2) + \sqrt{2}k] = 0$ which gives the other two eigenfrequencies

$$\begin{aligned} (2 - \sqrt{2})k - m\omega^2 &= 0 \Rightarrow \omega_2 = \sqrt{\frac{(2 - \sqrt{2})k}{m}} \\ (2 + \sqrt{2})k - m\omega^2 &= 0 \Rightarrow \omega_3 = \sqrt{\frac{(2 + \sqrt{2})k}{m}} \end{aligned}$$

c)-The system has 3 modes (3 natural frequencies), so the solutions are:

$$x_{h1}(t) = A_1 \cos(\omega_1 t + \varphi_1) + A_2 \cos(\omega_2 t + \varphi_2) + A_3 \cos(\omega_3 t + \varphi_3)$$

$$x_{h2}(t) = B_1 \cos(\omega_1 t + \varphi_1) + B_2 \cos(\omega_2 t + \varphi_2) + B_3 \cos(\omega_3 t + \varphi_3)$$

$$x_{h3}(t) = C_1 \cos(\omega_1 t + \varphi_1) + C_2 \cos(\omega_2 t + \varphi_2) + C_3 \cos(\omega_3 t + \varphi_3)$$

Now let's express the amplitudes B_i and C_i in terms of A_i , where $i = 1, 2, 3$

$$\textcircled{1}' \Rightarrow B = \frac{(2k - m\omega^2)}{k} A \Rightarrow B_i = \frac{(2k - m\omega_i^2)}{k} A_i$$

$$\begin{aligned}
B_1 &= \frac{(2k - m\omega_1^2)}{k} A_1 = \frac{(2k - m\frac{2k}{m})}{k} A_1 = 0 \\
B_2 &= \frac{(2k - m\omega_2^2)}{k} A_2 = \frac{(2k - m\frac{(2 - \sqrt{2})k}{m})}{k} A_2 = \sqrt{2}A_2 \\
B_3 &= \frac{(2k - m\omega_3^2)}{k} A_3 = \frac{(2k - m\frac{(2 + \sqrt{2})k}{m})}{k} A_3 = -\sqrt{2}A_3 \\
\textcircled{2}' \Rightarrow C &= \frac{(2k - m\omega^2)B - kA}{k} \Rightarrow C_1 = -A_1, C_2 = A_2 \text{ et } C_3 = A_3
\end{aligned}$$

d) The equations of motion for the damped forced system (applying successively the fundamental dynamics relation to the three masses) are as follows:

$$\begin{cases} m\ddot{x}_1 + f\dot{x}_1 + 2kx_1 - kx_2 = F_0 \sin \omega_{ex} t & \textcircled{1}'' \\ m\ddot{x}_2 + f\dot{x}_2 + 2kx_2 - kx_1 = 0 & \textcircled{2}'' \\ m\ddot{x}_3 + f\dot{x}_3 + 2kx_3 - kx_2 = 0 & \textcircled{3}'' \end{cases}$$

The solutions are given by:

$$x_1(t) = x_{1h} + x_{1p}, \quad x_2(t) = x_{2h} + x_{2p} \text{ et } x_3(t) = x_{3h} + x_{3p}$$

x_{1h}, x_{2h} et x_{3h} : represent the homogeneous solutions (transient regime) and

x_{1p}, x_{2p} et x_{3p} : represent the particular solutions (steady-state regime).

To determine the steady-state solutions:

$$x_{1p} = A \sin(\omega_{ex} t + \varphi_1), \quad x_{2p} = B \sin(\omega_{ex} t + \varphi_2) \text{ et } x_{3p} = C \sin(\omega_{ex} t + \varphi_3),$$

When using complex notation, we have: $x_{1p} = \bar{A}e^{j\omega_{ex}t}, x_{2p} = \bar{B}e^{j\omega_{ex}t}$ et $x_{3p} = \bar{C}e^{j\omega_{ex}t}$ et

$$F(t) = \text{Im}(F_0 e^{j\omega_{ex}t}) \text{ avec } \bar{A} = A e^{\varphi_1}, \bar{B} = B e^{\varphi_2} \text{ et } \bar{C} = C e^{\varphi_3}$$

By substituting these solutions and their derivatives into equations $\textcircled{1}''$ $\textcircled{2}''$ and $\textcircled{3}''$ on we obtain:

$$\begin{cases} [(2k - m\omega_{ex}^2) + jf\omega_{ex}]\bar{A} - k\bar{B} = F_0 \\ -k\bar{A} + [(2k - m\omega_{ex}^2) + jf\omega_{ex}]\bar{B} - k\bar{C} = 0 \\ -k\bar{B} + [(2k - m\omega_{ex}^2) + jf\omega_{ex}]\bar{C} = 0 \end{cases}$$

The friction coefficient $f = c = 1 \text{ Nms}^{-1}$, (le The main determinant $\mathfrak{D}_p = \det_{sys}$).

$$\mathfrak{D}_p = \det_{sys} = \begin{vmatrix} [(2k - m\omega_{ex}^2) + j\omega_{ex}] & -k & 0 \\ -k & [(2k - m\omega_{ex}^2) + j\omega_{ex}] & -k \\ 0 & -k & [(2k - m\omega_{ex}^2) + j\omega_{ex}] \end{vmatrix}$$

$$\det_{sys} = [(2k - m\omega_{ex}^2) + j\omega_{ex}][(2k - m\omega_{ex}^2 + j\omega_{ex})^2 - 2k^2]$$

$$\bar{A} = \frac{\begin{vmatrix} F_0 & -k & 0 \\ 0 & [(2k - m\omega_{ex}^2) + j\omega_{ex}] & -k \\ 0 & -k & [(2k - m\omega_{ex}^2) + j\omega_{ex}] \end{vmatrix}}{\det_{sys}}$$

$$\bar{A} = \frac{[(2k - m\omega_{ex}^2 + j\omega_{ex})^2 - k^2]F_0}{\det_{sys}}$$

$$\bar{B} = \frac{\begin{vmatrix} [(2k - m\omega_{ex}^2) + j\omega_{ex}] & F_0 & 0 \\ -k & 0 & -k \\ 0 & 0 & [(2k - m\omega_{ex}^2) + j\omega_{ex}] \end{vmatrix}}{\det_{sys}}$$

$$\bar{B} = \frac{F_0 k [(2k - m\omega_{ex}^2) + j\omega_{ex}]}{\det_{sys}}$$

$$\bar{C} = \frac{\begin{vmatrix} [(2k - m\omega_{ex}^2) + j\omega_{ex}] & -k & F_0 \\ -k & [(2k - m\omega_{ex}^2) + j\omega_{ex}] & 0 \\ 0 & -k & 0 \end{vmatrix}}{\det_{sys}}$$

$$\bar{C} = \frac{F_0 k^2}{\det_{sys}}$$

$$x_{1p} = A \sin(\omega_{ex} t + \varphi_1) \text{ avec } A = |\bar{A}| \text{ et } \varphi_1 = \frac{\text{Im} \bar{A}}{|\bar{A}|} \quad (\varphi_1 = \arg \bar{A})$$

$$x_{2p} = B \sin(\omega_{ex} t + \varphi_2) \text{ avec } B = |\bar{B}| \text{ et } \varphi_2 = \frac{\text{Im} \bar{B}}{|\bar{B}|} \quad (\varphi_2 = \arg \bar{B})$$

$$x_{3p} = C \sin(\omega_{ex} t + \varphi_3) \text{ avec } C = |\bar{C}| \text{ et } \varphi_3 = \frac{\text{Im} \bar{C}}{|\bar{C}|} \quad (\varphi_3 = \arg \bar{C})$$

Exercise 4:

The system is in translational motion along the x-axis and has two degrees of freedom x_1 and x_2 . Additionally, m_1 mass is subjected to an excitation force, so the Lagrange equations can be written as:

$$\left\{ \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}_1} \right) - \frac{\partial \mathcal{L}}{\partial x_1} = F(t) \right. \quad (1)$$

$$\left. \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}_2} \right) - \frac{\partial \mathcal{L}}{\partial x_2} = 0 \right. \quad (2)$$

The Lagrangian of the system is $\mathcal{L} = T - V$ with kinetic energy is :

$$T = \frac{1}{2} m_1 \dot{x}_1^2 + \frac{1}{2} m_2 \dot{x}_2^2$$

And potentiel energy is :

$$V = \frac{1}{2} k x_1^2 + \frac{1}{2} k (x_2 - x_1)^2$$

On aboutit aux équations suivantes:

$$\begin{cases} m_1 \ddot{x}_1 + k_1 x_1 - k_2 (x_2 - x_1) = F_0 \cos \omega_{ex} t \\ m_2 \ddot{x}_2 + k_2 (x_2 - x_1) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} m_1 \ddot{x}_1 + (k_1 + k_2) x_1 - k_2 x_2 = F_0 \cos \omega_{ex} t \quad (1) \\ m_2 \ddot{x}_2 - k_2 x_1 + k_2 x_2 = 0 \quad (2) \end{cases}$$

The solutions are:

$$x_1(t) = A_1 \cos(\Omega_1 t + \varphi_1) + A_2 \cos(\Omega_2 t + \varphi_2) + A' \cos(\omega_{ex} t + \theta_1)$$

$$x_2(t) = B_1 \cos(\Omega_1 t + \varphi_1) + B_2 \cos(\Omega_2 t + \varphi_2) + B' \cos(\omega_{ex} t + \theta_2)$$

Now let's determine the natural frequencies Ω_1 and Ω_2 . In a mode with a frequency Ω the solutions take the form:

$$x_1(t) = A \cos(\Omega t + \varphi) \text{ et } x_2(t) = B \cos(\Omega t + \varphi)$$

By replacing x_1 and x_2 and their second derivatives in the equations of motion (1) and (2), we obtain the following equations:

$$\begin{cases} (-m_1 \Omega^2 + k_1 + k_2) A - k_2 B = 0 \\ -k_2 A + (-m_2 \Omega^2 + k_2) B = 0 \end{cases}$$

$$\begin{aligned} \det_{sys} &= \begin{vmatrix} (-m_1 \Omega^2 + k_1 + k_2) & -k_2 \\ -k_2 & (-m_2 \Omega^2 + k_2) \end{vmatrix} \\ &= (-m_1 \Omega^2 + k_1 + k_2)(-m_2 \Omega^2 + k_2) - k_2^2 \end{aligned}$$

$$\det_{sys} = m_1 m_2 \Omega^4 - [m_2(k_1 + k_2) + m_1 k_2] \Omega^2 + k_2(k_1 + k_2) - k_2^2 = 0$$

Ω_1 and Ω_2 are the positive roots of this equation.

$$B_1 = \frac{-m_1\Omega_1^2 + k_1 + k_2}{k_2} A_1 \quad \text{et} \quad B_2 = \frac{-m_1\Omega_2^2 + k_1 + k_2}{k_2} A_2$$

To simplify the calculations, let's take $m_1 = m_2 = m$ et $k_1 = k_2 = k$

The determinant of the system becomes:

$\det_{sys} = m^2\Omega^4 - 3km\Omega^2 + k^2 = 0$, equation of natural frequencies or "equation of eigenfrequencies".

We find:

$$\Omega_1 = \sqrt{\frac{3-\sqrt{5}}{2}} \sqrt{\frac{k}{m}} \text{ and } \Omega_2 = \sqrt{\frac{3+\sqrt{5}}{2}} \sqrt{\frac{k}{m}}$$

$$B_1 = \frac{\sqrt{5}+1}{2} A_1 \quad \text{et} \quad B_2 = \frac{\sqrt{5}-1}{2} A_2$$

$$x_{1h}(t) = A_1 \cos\left(\sqrt{\frac{3-\sqrt{5}}{2}} \sqrt{\frac{k}{m}} t + \varphi_1\right) + A_2 \cos\left(\sqrt{\frac{3+\sqrt{5}}{2}} \sqrt{\frac{k}{m}} t + \varphi_2\right)$$

$$x_{2h}(t) = \frac{\sqrt{5}+1}{2} A_1 \cos\left(\sqrt{\frac{3-\sqrt{5}}{2}} \sqrt{\frac{k}{m}} t + \varphi_1\right) + \frac{\sqrt{5}-1}{2} A_2 \cos\left(\sqrt{\frac{3+\sqrt{5}}{2}} \sqrt{\frac{k}{m}} t + \varphi_2\right)$$

To determine the steady-state solutions :

$$x_{1p}(t) = A' \cos(\omega_{ex}t + \theta_1) \text{ et } x_{2p}(t) = B' \cos(\omega_{ex}t + \theta_2),$$

We are looking for the constants A', B', θ_1 et θ_2

For this, we use the complex number method. Therefore, let's set:

$$x_{1p} = A' e^{j(\omega_{ex}t + \theta_1)} = \bar{A}' e^{j\omega_{ex}t} \quad \text{avec} \quad \bar{A}' = A' e^{j\theta_1}$$

$$x_{2p} = B' e^{j(\omega_{ex}t + \theta_2)} = \bar{B}' e^{j\omega_{ex}t} \quad \text{avec} \quad \bar{B}' = B' e^{j\theta_2}$$

and

$$F(t) = \mathcal{R}(F_0 e^{j\omega_{ex}t})$$

By substituting these notations into the system of equations ① and ②, we find:

$$\begin{cases} (2k - m\omega_{ex}^2)\bar{A}' - k\bar{B}' = F_0 \\ -k\bar{A}' + (k - m\omega_{ex}^2)\bar{B}' = 0 \end{cases}$$

$$\bar{A}' = \frac{(k - m\omega_{ex}^2)F_0}{(2k - m\omega_{ex}^2)(k - m\omega_{ex}^2) - k^2} \quad \text{et} \quad \bar{B}' = \frac{kF_0}{(2k - m\omega_{ex}^2)(k - m\omega_{ex}^2) - k^2}$$

With

$$A' = |\bar{A}'|, \quad B' = |\bar{B}'|, \quad \theta_1 = \text{Arg} \bar{A}' \text{ et } \theta_2 = \text{Arg} \bar{B}'.$$

$$\theta_1 = \theta_2 = 0$$

The steady-state solutions can be expressed as : $x_{1p} = \bar{A}' \cos \omega_{ex}t$ et $x_{2p} = \bar{B}' \cos \omega_{ex}t$

b)-The system is now subjected to a frictional force assumed to be proportional to the velocity, applying the fundamental principle of dynamics:

$$m\vec{\gamma} = \Sigma \overrightarrow{F_{ext}} = \vec{R} + \vec{P} + \overrightarrow{F_r} + \overrightarrow{F_f} + \overrightarrow{F_{ex}} .$$

After projection onto the x-axis, the equations of motion are written as:

$$\begin{cases} m_1\ddot{x}_1 + f\dot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 = F_0 \cos \omega_{ex}t \\ m_2\ddot{x}_2 + f\dot{x}_2 - k_2x_1 + k_2x_2 = 0 \end{cases}$$

The steady-state solutions:

$x_{1p} = A \cos(\omega_{ex}t + \alpha_1)$ et $x_{2p} = B \cos(\omega_{ex}t + \alpha_2)$ are expressed in complex notation as:

$$x_{1p} = \bar{A} e^{j(\omega_{ex}t)} \text{ et } x_{2p} = \bar{B} e^{j(\omega_{ex}t)}, \bar{A} = Ae^{j\alpha_1}, \bar{B} = Be^{j\alpha_2}$$

We obtain:

$$\begin{cases} (-m_1\omega_{ex}^2 + jf\omega_{ex} + k_1 + k_2)\bar{A} - k_2\bar{B} = F_0 \\ -k_2\bar{A} + (-m_2\omega_{ex}^2 + k_2 + jf\omega_{ex})B = 0 \end{cases}$$

So

$$\bar{A} = \frac{(-m_2\omega_{ex}^2 + k_2 + jf\omega_{ex})F_0}{(-m_1\omega_{ex}^2 + jf\omega_{ex} + k_1 + k_2)(-m_2\omega_{ex}^2 + k_2 + jf\omega_{ex}) - k_2^2}$$

and

$$\bar{B} = \frac{k_2F_0}{(-m_1\omega_{ex}^2 + jf\omega_{ex} + k_1 + k_2)(-m_2\omega_{ex}^2 + k_2 + jf\omega_{ex}) - k_2^2}$$

For $f = c = 1N.ms^{-1}$

$$\begin{aligned} \bar{A} &= \frac{(-m_2\omega_{ex}^2 + k_2 + j\omega_{ex})F_0}{(-m_1\omega_{ex}^2 + j\omega_{ex} + k_1 + k_2)(-m_2\omega_{ex}^2 + k_2 + j\omega_{ex}) - k_2^2} \\ \bar{B} &= \frac{k_2F_0}{(-m_1\omega_{ex}^2 + j\omega_{ex} + k_1 + k_2)(-m_2\omega_{ex}^2 + k_2 + j\omega_{ex}) - k_2^2} \end{aligned}$$

$$A = |\bar{A}|, \quad B = |\bar{B}|$$

$$\alpha_1 = \alpha_{1n} - \alpha_{1d}$$

$$\alpha_2 = \alpha_{2n} - \alpha_{2d}$$

Exercise 5:

a) Let's consider the semi-system constituted by the order pendulums (n-1), n et (n+1)

$$L = T - V$$

kinetic energy : $T = \frac{1}{2}I\dot{\theta}_{n-1}^2 + \frac{1}{2}I\dot{\theta}_n^2 + \frac{1}{2}I\dot{\theta}_{n+1}^2$

With $I = ml^2$

Potential energy : $V = -mgh_{n-1} - mgh_n - mgh_{n+1} + V'$

V' represents the potential energy of deformation of the springs.

For small angles θ_n :

$$V' = \frac{1}{2}k(l\theta_n - l\theta_{n-1})^2 + \frac{1}{2}k(l\theta_n - l\theta_{n+1})^2$$

Therefore :

$$L = \frac{1}{2}I\dot{\theta}_{n-1}^2 + \frac{1}{2}I\dot{\theta}_n^2 + \frac{1}{2}I\dot{\theta}_{n+1}^2 - \frac{1}{2}k(l\theta_n - l\theta_{n-1})^2 - \frac{1}{2}k(l\theta_n - l\theta_{n+1})^2 + mg\cos\theta_{n-1} + mg\cos\theta_n + mg\cos\theta_{n+1}$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_n} \right) - \left(\frac{\partial L}{\partial \theta_n} \right) = ml^2\ddot{\theta}_n + mg\sin\theta_n + kl^2(\theta_n - \theta_{n-1}) + kl^2(\theta_n - \theta_{n+1}) = 0$$

$$\ddot{\theta}_n + \frac{g}{l}\sin\theta_n + \frac{2k}{m}\theta_n - \frac{k}{m}(\theta_{n+1} + \theta_{n-1}) = 0$$

For small angles θ_n ($n=0, \dots, N$), $\sin\theta_n \approx \theta_n$ et $x_n \approx l\theta_n$

Hence, the equation of motion in x is:

$$\ddot{x}_n + \left(\frac{g}{l} + \frac{2k}{m} \right) x_n - \frac{k}{m} (x_{n+1} + x_{n-1}) = 0$$

b) $x_n = (A\sin Kna + B\cos Kna)\cos(\omega t + \varphi)$

$$x_{n+1} = (A\sin K(n+1)a + B\cos K(n+1)a)\cos(\omega t + \varphi)$$

$$x_{n-1} = (A\sin K(n-1)a + B\cos K(n-1)a)\cos(\omega t + \varphi)$$

Knowing that:

$$\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos\alpha\cos\beta$$

$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\sin\beta$$

$$x_{n+1} + x_{n-1} = 2\cos Ka(\sin Kna + B\cos Kna) \cos(\omega t + \varphi) = 2x_n \cos Ka$$

$$\ddot{x}_n = -\omega^2 x_n$$

By substituting these expressions into the equation of motion, we obtain

$$-\omega^2 + \frac{g}{l} + \frac{2k}{m} - \frac{2k}{m} \cos Ka = 0 \Rightarrow \omega^2 = \frac{g}{l} + \frac{2k}{m} (1 - \cos Ka)$$

$$(\cos Ka = 1 - 2\sin^2 \frac{Ka}{2})$$

$$\omega = \sqrt{\frac{g}{l} + \frac{4k}{m} \sin^2 \frac{Ka}{2}}$$

c) The boundary conditions are :

$$x_0 = 0 \quad \text{et} \quad x_{N-1} = 0$$

$$x_0 = 0 + B = 0 \Rightarrow B = 0 \quad \text{donc } x_n = A \sin Kna \cos(\omega t + \varphi)$$

d) $x_{N-1} = A \sin K(N-1)a \cos(\omega t + \varphi)$

$$x_{N-1} = 0 \Rightarrow \sin K(N-1)a = 0 \Rightarrow K(N-1) = m\pi$$

$$\sin a = \sin b \Rightarrow a = b + 2K\pi, \quad a = \pi - b + 2K\pi$$

$$m = 0, 1, 2, \dots, (N-1)$$

The possible values of K are:

$$K = \frac{m\pi}{(N-1)a}$$

With

$$m = 1, 2, \dots, (N-2)$$

$$\omega_{min} = \sqrt{\frac{g}{l} + \frac{4k}{m} \sin^2 \frac{K_1 a}{2}} = \sqrt{\frac{g}{l} + \frac{4k}{m} \sin^2 \frac{\pi}{2(N-1)}}$$

$$\omega_{max} = \sqrt{\frac{g}{l} + \frac{4k}{m} \sin^2 \frac{K_{N-2} a}{2}} = \sqrt{\frac{g}{l} + \frac{4k}{m} \sin^2 \frac{(N-2)\pi}{2(N-1)}}$$