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Tutorial 3 Solutions

Exercise 1:

1)

a) In a mode of pulsation o : x(t) = Acos(wt + @) and 6(t) = Bcos(wt + ¢)

Substituting into the homogeneous system of equations.

X+10x—-6 =0
6+100 —x=0
We obtain
(10— w?>)A-B =0
-A+(10—-w?)B =0
(10 — w?) -1
-1 (10 — w?)

The values of ® are the roots of the equation :

10 — w? -1

3):‘ -1 10 — w?

rad

-0

=(10-w?)?-1=(11-w?)(9-w?) =0

rad
= W = VllT et w, =v9 =3 5 The natural frequencies

xp = Ay cos(wyt + @1) + A, cos( wat + @)
0y, = By cos( wyt + @1) + B, cos(wat + @3)

b) F(t) = Fy coswext = x,(t) = acos(wext + ;) et (t) = bcos(wext + a3)

Let's find a,b a; et a;, and using the complex method.

f(t) — aejwext: aejalej(ﬂext‘L a

é(t) — Bejwext: aejaZej(J‘)ext‘L
F(t) = R(F, e/@ext)

By substituting into the system of equations, we obtain :

(10 — w2)a —b=F,
—-a + (10— wZ2)b =0

S

ejal

ejaZ




a and b to be determined using Cramer's rule. We have a system of two equations with two
unknowns:

The principal determinant ©D,,:

o = (10 — wi)) -1
P -1 (10 - wezx)
Fo -1 2 2
g = 0 (10-w3)| _ (10 — wgx)Fy _ (10 — wix) Fy
Dp iDp (10 — wZ)? -1
10— w3y F
E—|( (1’1) o R F,
iDp iDp (10 —wZ)? -1
a = |al
b = |b]

a;=a, =0
ae’® = a(cosa, +jsina;) = a(arg(z,) — arg (z,))
The forced oscillations can be expressed as:
x,(t) = acos(weyt + 1) avec a=|lal eta; =arga
6,(t) = bcos(wext + @3) avec b = |b| et a; =argh

When a and b are real, the forced oscillations can be expressed as:

(10 — w,)F,
(10— w2’ —1
Fy
(10 — )’ — 1

x,(t) = acos(weyt) = coS(wWeyt)

0,(t) = bcos(wext) =

coS(Weyt)

c) The general expressions for x, (t) et 6,(t) :

xg(t) = xp +x, = A; cos(wit + @1) + A, cos(wat + @2) + acos(wext)

0,(t) = 04+ 0, = B, cos( w1t + @) + B, cos( wat + @,) + bcos(wext)

From equation (1), we express B interms of A : (10 — w?)A—B=00nB = (10 — w?)A
B; = (10 — w?)A; = (10 — 11)A, = -4,
B, = (10 — w3)A4, = (10 — 9)4, = 4,



10 — w%)F
|( xg(t) = Ay cos( V11 t+ ¢;) + Az cos(3 t+ ;) + ( wexz) 0 cos(weyt)
4 (10 —w3) —1
F
teg(t) = —A; cos( V11 t + @) + Ay cos(3 t + @y) + ;) 5 coS(Wext)
(10 —wz,) —1

Exercise 2:

First method:

The torques' moments —C6, K and — C6,K , where K is the unit vector directed upward.
F, = —ka(6, — 6,)T
Fy = —ka(6, — 6,)T

6

are very small.
0

where the angles {

]9? = Sum of the moments of forces with respect to the rotation axis = z M (ﬁex).F
—r 2 —_— = T[ —
M(F,) = 0,4 AFy = 0,A.ka(8; — 0,)sin G — 6K
—r 2 —_— - T s
M(F,) = 0,B AF; = 0,B.ka(6, — 6;)sin (E —0,)K

sin (g — 91) =cosf; = 1

sin (g — 92) =cosf, = 1

]6; = —CO; — ka? (6, — 6,) = —(C + ka?)6, + ka? 0,
éz = —C92 —~ kaz (92 - 91) = _(C + kaz )02 + kaz 01
k=5 €=90, J=1 eta=2
The equations of motion are written as
{él + 1106, — 206, = 0
6, + 1100, — 206, =0
In a mode with pulsation w, the solutions take the form:
0, = Acos(wt + @)
0, = Bcos(wt + ¢)
{ (110 — w?)A—20B =0
—204+ (110 —w?®)B =0
The natural frequencies are the roots of the equation:

110 — w? - 20
—20 110 — w?

(110 — w? + 20)(110 — w? — 20) = 0

= (110 — w?)? —20% = 0

(130 — 0?)(90 — w?) = 0



wq =v130 =11,402rad/s et w; =v90 =9,487rad/s

Second method:
L=T-V

1 ., 1 .,
V =2C6%+-C0% + ~k(ab; — ab,)>
with C = k,, the torsional constant

1 ., 1 ., 1 1 1
L=2]6,° +§1922 —5C07 =503 — 5 k(ab; - af,)?

2
d /0L oL
E(a_e'l)_a_el_o ®
d /0L oL
E(a_éz)_a_el_o @

d (9L aL—o 6, + (C + ka?)8, —ka?6, =0
dt \ a6, 20, J61 a-)v; a~v; =
d (9L aL—o 6, + (C+ka?)0, —ka?0, =0
dt \ a6, Fr ]9, a=)u; a v, =
In a mode with pulsation w, the solutions take the form:

0, = Acos(wt + @)

0, = Bcos(wt + ¢)

{ (110 - w?)A—-20B =0
—204+ (110 —w?»)B =0

The natural frequencies are the roots of the equation:
— w2 —
— —w
(110 — w? +20)(110 — w? — 20) = 0
(130 — w?)(90 — w?) = 0

w,; =v130 =11,402 rad/s et w, =+v90 =9,487rad/s



Exercise 3:

a)- Equations of motion of the system

Let the displacements of block 1, block 2 and block 3 from their equilibrium positions be
X1, X, and x3, respectively, each positive to the right. Our goal is to find the differential
equations of motion of each block and then solve them to find x;(t), x,(t) and x5(t). The
Lagrangian of the systemis: L =T -V

with Kinetic energy is: T = %ma’cf + %ma’c% + %ma’c%

And potential energy is : V = %kxf +%k(x2 —x)%+ %k(x3 —x,)% + %kxﬁ

The system is in translational motion along the x-axis and has three degrees of freedom

X1, X, and x5 SO Lagrange’s equations give (Application of Lagrange’s equations leads to):

(d (0L oL
ai(52) 55 =0 ©
d /0L aL
[ d(ony o _ ®
dt\dx,/ 0x,
d (0L aL
o (5e) 7 =0 ®
The equations of motion
mi; + kx; — k(x, —x,) =0 mi; + 2kx; —kx, =0 €
mi, + k(x, —x;) —k(xz —x;) =0 =9 mix, + 2kx, —kx; —kx; =0 2
mjé3+k(x3_x2)+kx3 =0 mjé3+2kX3_ka =0 @

b)- Natural vibration frequencies of the system.
In a normal mode, by definition each block oscillates with the same frequency, so we can

simply try the solutions:

x1(t) = A cos(wt + @) / ¥ = —wix,
x,(t) = B cos(wt + @) / ¥, = —w?x,
x3(t) = C cos(wt + @) / X3 = —w?%x3

with the same frequency for each.
By substituting these solutions and their second derivatives into equations (1), (2) and (3), we
find:
—mw?A cos(wt + @) + 2kA cos(wt + @) — kB cos(wt + @) =0
—mw?B cos(wt + @) + 2kB cos(wt + @) — kA cos(wt + @) — kC cos(wt + @) =0
—mw?C cos(wt + @) + 2kC cos(wt + @) — kB cos(wt + @) =0
2k —mw*)A—kB =01
—kA+ 2k —mw?)B—kC =0 @)
—kB + 2k —mw?)C =0(3)



Which in matrix form becomes

(2k — mw?) —k 0 A
—k (2k — mw?) —k <B> =0
0 —k 2k — mw?)) \C

Which have a nontrivial solution only if the determinant of the coefficient matrix is zero. That

is, the secular equation is:

(2k — mw?) —k 0
detg,= —k (2k — mw?) —k
0 —k (2k — mw?)

Expanding about the top row,
dets,=(2k — mw?)[(2k — mw?)? — k?] + k[—k(2k — mw?)]
= (2k — mw?)[(2k — mw?) — 2k?]
Factoring,
=2k — mw?)[(2k — mw?) — V2k]|[(2k — mw?) + V2k] = 0

The product of a linear and a quadratic equation in w?, with altogether three solutions. The

2k
> 2k—-mw?=0>w, = |—
,’m

The second factor is zero if [(2k — mw?) — vV2k|[(2k — mw?) + V2k] = Owhich gives the

first factor is zero if

other two eigenfrequencies

2—+2)k
Q2—=V2)k—mw?=0=w, = ’%
(2+V2)k —mw? = 0= w; = ’%

c)-The system has 3 modes (3 natural frequencies), so the solutions are:
xp1(t) = Ag cos(wit + @) + Az cos(wzt + ¢,) + Az cos(wst + ¢,)
xnz(t) = By cos(wit +¢@,) + By cos(w,t + ¢,) + Bz cos(wst + ¢,)
xp3(t) = Cycos(wit +¢@,) + C; cos(wzt +¢,) + C3 cos(wst +¢,)

Now let's express the amplitudes B; and C; interms of A;,wherei = 1,2 and 3

2k — mw? 2k — mw?
ST YT



2k
_ (k- mwf)A _ 2k —m—>)

1 & 1 & A =0
2 —V2)k
(2k — mw?) (2k - m%)
B, = #Az = k Ay = \/EAZ
2 +V2)k
Qk-mo)  @k-m VDK
3= A3 = Az = _\/EA3
k k
2k — 2)B — kA
@,=>6=( mw) $C1=—A1,C2=A2etC3=A3

k
d) The equations of motion for the damped forced system (applying successively the

fundamental dynamics relation to the three masses) are as follows:
mxy + fxy 4+ 2kxy —kx, = Fysinw,,t (1"
mxy, + —fx, + 2kx, —kx; = 0 @)
mxs + fxs + 2kxs —kx, —kx, = 0 }3)"
The solutions are given by:
x1(t) = x1p + X1p x2(t) = Xon + Xxgp €t x3(E) = X35 + X3p
X1p, Xop €t X3p: Tepresent the homogeneous solutions (transient regime) and
X1p, X2p €t X3, Tepresent the particular solutions (steady — state regime).
To determine the steady-state solutions:
X1p = A sin(a)ext + gol), Xop = B sin(wext + goz) et xg, = C sin(wext + 903),
When using complex notation, we have : x;, = Ae/®ext, x,, = Bel®ext et x5, = Cel@ext et
F(t) = Im(Fye/®ext) avec A = Ae®t. B = Be®2etC = Ce?s

By substituting these solutions and their derivatives into equations (1) (2)"and (3)" on we

obtain:

[(Zk - mng) -l'jfwex]“T — kB = Fy

—kA+ [(2k — mwZ,) + jfwe]B — kC =0

—kB + [(2k — mw?2,) + jfwe,l]C= 0
The friction coefficient f = ¢ = 1Nms™1, (le The main determinant D,, = det;,).

[(Zk - mng) +jwex] —k 0

D, = detgys= —k [(2k — mwZ,) + jwey] -k

0 —k [(Zk - mng) +j(‘)ex]

detsys: [(Zk - mng) +jwex] [(Zk - mng +jwex)2 - Zkz]



FO _k 0

0 [(Zk - mng) +jwex] —k
/T . 0 -k [(Zk - m(‘)gx) +j(‘)ex]
- detgys
A= [(2k — mng +jwex)2 - kZ]FO
B detsys
[(Zk - mng) +jwex] FO 0
—k 0 —k
E _ 0 0 [(Zk - mng) +jwex]
- detgys
5— Fok[(Zk - mng) +jwex]
a detgys
[(Zk - mng) +jwex] —k FO
—k [(Zk - mng) + jwex] 0
= 0 —k 0
detgys
_ Fok?
C=
detgys

. — ImA —
X1p = Asin(we,t + 1) avec A = |A| et @ = T (p1 = argA)

. = ImB —
X2p = Bsin(we,t + ¢,) avec B = |B| et @, = Bl (¢, = argB)

. — ImC —
X3p = Csin(weyt + @3) avec € = |C| et o3 = It (3 = arg0)



Exercise 4:

The system is in translational motion along the x-axis and has two degrees of freedom
x, and x,. Additionally, m; mass is subjected to an excitation force, so the Lagrange

equations can be written as:

{i<a_ﬁ>_a_ﬁ=p(t) @

{ dt\ox,/ 0x4
d (0L oL
@ (55) 5, = @
The Lagrangian of the systemis £ =T —V  with kinetic energy is
1 . 1
T = melz + mezz

And potentiel energy is :
1 1
V= Ekxl2 + Ek(xz —x,)?

On aboutit aux équations suivantes:

{mljﬁl + k1x1 - kz(xz - xl) = FO COS (Uext
my¥, + ky(xy —x1) =0

- {mljc'l + (ky + ky)x; — kyx, = Fycos weyt (1)
myX, —kyxq + kyx, =0 2
The solutions are:
x1(t) = Aj cos(it + 1) + A, cos(,t + ;) + A’ cos(we,t + 61)
x,(t) = By cos(,t + @1) + B, cos(,t + ;) + B’ cos(weyt +63)
Now let’s determine the natural frequencies 2;and (2, .In a mode with a frequency
0 the solutions take the form:

x,(t) = Acos(Qt + @)et x,(t) = B cos(2t + ¢)

By replacing x; and x, and their second derivatives in the equations of motion (1) and (2),
we obtain the following equations:

{(_mlﬂz + kl + kz)A - sz =0
_sz + (_mzﬂz + kz)B =0

det _ (—mlﬂz + kl + kz) _kz
s —k; (—mp0% + k)

= (—mlﬂz + kl + kz)(_mz.(zz + k2) - k%
detsys = m1m204 - [mz(kl + k2)+m1k2].(22 + kZ(kl + kz) - k% = 0



£, and 0, are the positive roots of this equation.

—m0? +k,+k —-m 0% +k,+k
Bl 1 1k 1 2A1 et B2= 1 Zk 1 ZAZ
2 2

To simplify the calculations, let's take m; =m, =m et ki=k, =k
The determinant of the system becomes:
detsys = m*Q* — 3kmf? + k* = 0, equation of natural frequencies or "equation of

eigenfrequencies”.

We find: 0, = 225 f\fandn2 - /3”[

\/_+1

1 =

xlh(t)—Alcos((/3 vs ﬁtwlnAzcos((F +V5 f O
1 f3—¢§ k V5-1 /3 NER
A; cos(( > \[%)t +¢)+ 5 A, cos(( +2 \[;t +¢,)

To determine the steady-state solutions :
x1,(t) = A’ cos(wt + 6;) et x,,(t) = B’ cos(wt + 6,),

Xop(t) =

We are looking for the constants A’, B,' 6, et 6,

For this, we use the complex number method. Therefore, let's set:
Xy = A' eI @alt0) = Freioat gyec A' = A'el%

X,y = B' e/(0ext#02) = Blejvext gyec B’ = B'el?

and F(t) = R(Fye/¥ext)
By substituting these notations into the system of equations (1) and (2), we find:
(2k — mw2,)A' — kB’ = F,
—kA" + (k — mw?,)B' =0
I — (k — mwZ,)Fy ot B = kFy
(Zk mwex)(k mwex) - kz B (Zk - mwezx)(k - mwezx) — k2

With
A =|A"|, B'=|B'|, 6, =ArgA’etl, = ArgB'.
91 = 02 = 0

The steady-state solutions can be expressed as : X, = A’ cos w,, t et Xop = B' COSw,t



b)-The system is now subjected to a frictional force assumed to be proportional to the
velocity, applying the fundamental principle of dynamics:

my=3Fpy =R+ P+E +F +F, .
After projection onto the x-axis, the equations of motion are written as:

{mljél + fx1 + (k1 + kz)xl - kzxz = FO Cos (Uext
mzjéz + fxz - kle + kzxz =0

The steady-state solutions:

X1p = A cos(wext + ay) et Xp, = B cos(wext + ;) are expressed in complex notation as:

xlp — /Tej(wext) et xzp = Eej(wext) ,/T — Aejal’ E — Bej(lz

We obtain:
(_mlng + jfWex + k1 + kz)t‘T - k2]§ =Fy
—k,A + (—myw?, + ky + jfwe,)B =0
So
A= (—mzng + k; +jfwex)F0
(_mlng +jfwex + kl + kz)(_mzwezx + kz +jfwex) - kzz
and
_ k,F
B = 200

(=M1 w2y + jfwex + ky + ko) (—Mawdy + ky + jfwey) — ky°
Forf =c=1N.ms™?!
(—mywZ, + Ky + jwey)Fy
(—My Wl + jwex + ky + ko) (—mawZ, + ky + jwer) — k3
kyFo
(—My e + jwex + ky + ko) (—MmawZ, + ky + jwer) — k3

2
Il

oo]
Il

A=|Al, B=|B|
01 = U1p — Qg

Uy = Ay — Apq



Exercise 5:

a) Let's consider the semi-system constituted by the order pendulums (n-1), n et (n+1)

L=T-V
kinetic energy : T =162, +5162 +-102,,
With I = ml?
Potential energy : V = —mgh,,_; —mgh, —mgh,,; +V'

V' represents the potential energy of deformation of the springs.

For small angles 6,, :

1 1
V' = S k(U6 — 165-1)* + 5 k(16— 1041)?

Therefore :

1 . 1 . 1 . 1 1
L= 519721_1 + 5197% + Elerzlﬂ — Ek(len —16,_1)? —Ek(len —10,41)* + mglcos6,_,

+ mglcos@, + mgll,,,

d (0L JaL o ,
" (@) — (E) = ml®0,+ mglsin6, + k1?(6,, — 0,_1) + k28, — Opp1) =0

. g . 2k k
0, + TSlTLHn + agn — ; (9n+1 + 9n_1) =0

For small angles 8,, (n=0,.................... N), siné, = 6, et x, =16,

Hence, the equation of motion in X is:

Xn + (% + %) Xn — % (Xp41 +X5-1) =0
b) x, = (AsinKna + BcosKna)cos (wt + ¢)
Xn+1 = (AsinK(n + 1)a + BcosK (n + 1)a)cos (wt + ¢)
Xp—1 = (AsinK(n — 1)a + BcosK(n — 1)a)cos (wt + @)
Knowing that:

cos(a + B)+ cos(a - B)=2cosa.cosP

sin(o + B)+ sin(a - B)=2sina.sinf



Xn41 + Xn—1 = 2cosKa(sinKna + BcosKna) cos(wt + ¢) = 2x,cosKa

i, = —wix,

By substituting these expressions into the equation of motion, we obtain

2k 2k 2k
—w? +g+———cosKa= 0= w? =g+—(1—COSKa)
Il m m I m

Ka
(cosKa = 1 — 2sin? 7)

c) The boundary conditions are :

Xg = 0 et XN—1 — 0
Xo=0+B=0=B=0 doncx, =AsinKna cos (wt + ¢)
d) xy_1 = AsinK(N — 1)a cos (wt + @)
Xny-1=0=sinK(N—1)a=0=>KWN-1) =mnr

sina=sinb =>a=b+2Kn, a=7n—b+2Knr

m=0,1,2 .o v eir v, (N = 1)

The possible values of K are:

With




