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Exercise 1 :
Consider the following mechanical system
m= 1kg ,k;, = 20N/m ; k, = 5N/m
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The existence of a piston — a viscous friction force F¢ of the form:

— N . dx .
Fr=——cv=—cx1 (v—;—x)

a) Equation of motion for mass m along the X-axis

(Newton's law of motion is used to establish the differential equation of motion of one-

degree-of-freedom systems).

_d?x

My = SFpy = Fry + Fry + ﬁ'; (y=—3z = X = acceleration)
E; = fl ) E; = fz
Along the (OX) axis: T, +T, + f]: = mii
(The projection of Pand R along (OX) is zero ; & = ‘:Tf; 1 : unit vector along the (OX) axis)
= m¥ =—kx —k,x —cx=m¥+cx+ (k; +k;)x=0

Dividing by m, we obtain a second-order differential equation of the form:

c ki+k
grlgpatha),
m

i+ L4 latka) 0 avec a)g:M:ZSrad/s
m m m

So the differential equation of motionis: ¥ + cx +25x =10

b)The values of ¢ for which we have damped oscillatory motion:

The characteristic equation of this second-order differential equation is:




2+ ca+25=0 < ar? + br + ¢ = 0; withA =b? — 4ac=c? —4x25
For the motion to be damped oscillatory, it is necessary for A to be less than zero (A < 0).
Therefore, the values of ¢ are: ¢2 — 100 < 0 = ¢ <10Nsm™t.

¢) The general expression of x(t) is:

Wehave: ¢ =0.1Nsm 1= A <0 so we have damped oscillatory motion..

c ki+k
gplgyaths)
m m

Let’s define 2% =C; and a)(z, _ (kitks)

We obtain the differential equation:: X + 2 A% + w3x =0
If A =b" —ac =2 —w? =2(wi-12) = j2w?2
, then we have two complex roots: r;, = —Atjw, where w, =/ w5—22

Therefore, the solution to the differential equation is of the form x(t) = Ae *cos (w,t + @)

. _ < _ | (kitk2) N2
Here: 2\ = - et w, = \[—m (Zm)
w, . Natural frequency; w, pseudo-frequency; A : damping factor
.Given values : A =10.05 wo, = 5Srad/s; w, =+/25—(0.05)2 =4.99 = 5rad/s
So, the solution becomes: x(t) = Ae%%tcos (5t + @)
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- Logarithmic decrement &

5 =ln [%] = AT,

Where T, is the pseudo-period, and inthiscase & = A (i—“) = Zn% = 2mx1072
wo

- Quality factor Q Q= "

> _ 50

For the given values: Q = =
2x0.05




Exercise 2 :
Consider the following mechanical system: HSH LT
m=1kg,c = 04Nms™1,8 = 107%; K =?

We have a viscous friction force: Fy = —cv

S . . d o N
(v :velocity; ; v, =% = d—fveloaty in the x— direction ) — ——i T
fr

Note: The mass is in translational motion along the B +

OX axis. The problem can be solved using two methods:

- 2 )
1-Using : my = X F,, (Y =% = % - acceleration)

mi=P+T+F
mi = —cx — kx
Giventhat: mg — kAl =0  (equilibrium condition))

mi+cx+kx=0

X+ %x + =% = 0
2-Writing the Lagrangian of the system (to be detailed below).
So, the Lagrange equation is::
40y o o W
dt\ox/ Ox 0x

D is the dissipation function.

The Lagrangian L isgivenby: L=T -V (T = %mxz : the kinetic energy ; V = %kxz:

the potential energy) and D = %c:‘cz: dissipated energy (The loss of energy over time by a

dynamic system, primarily attributed to friction.).
1 1

L= mez —Ekxz

d (6L) = mi oL Iox aD i
dt \ax/) ax ax

Substituting into equation (1), we get:
mi+cx+kx=0

Dividing by m, we obtain a second-order differential equation of the form:

Cc
¥i+—x+—x=0 < X+2x+wix=0
m m



a) The values of k for which we have a damped oscillatory motion:

This linear, second-order, homogeneous, differential equation has a solution of the form:
x(t) = Ae™ "t (trial solution)
k

c
r’+—r+—=0
m m

¥4+ 2Ax + wix =0
ar?+br+c=0
With A = b? — 4ac = 42> — 4w}
For damped oscillatory motion, (A < 0)..
Therefore, the values of k are given by:

c\2 k
P-—ws<0 = AP<w = (—) <—
Hence :

kK>S AN k> 0.04N/m

b) Determination of the pseudo-period T, and the stiffness constant k :

The logarithmic decrement is given by § = AT,

Ona: §=AT, T,=3 donc T,=2""= A.N:T,=005s

The pseudo-frequency w, is given by: :
k
w2 = wi — 12 = wi =E=wﬁ+12=k=m(w§+/12)

k = m(w? + 12)
_c 2 _ (272
Az—m et a)a—(a

A.N.. k = 157 10* N/m



Exercise 3 :

¢ =50Ns/m, k=600N/m, m=7kg,w, = \/% = /@ =9.258 rad/s

c. = 2mw, = 2(7)(9.258) = 129.6N.s/m

Since (= Ci = %:6 =039<1 ¢ < ¢, , the system is underdamped,
c 2 50 2
Wy = W, |1— (C—) =9.258 |1— (=) =8.5427ad/s
- - >0 = 3.751
2m 2(7)

From the equation
x(t) = Ae *sin (w, t + @)
Where A and ¢ are constants generally determined from the initial conditions of the problem
C
x(t) = Ae zm'sin (w,t + @)

Or v=x(t)=A [—e“ﬂtwacos (Wt + @) + (— i) e 2m'sin (w,t + (p)]

_c, c . _<, .
v=A [—e 2m” w,cos (wyt + @) + (= %) e 2m'sin (w,t + <p)]

< c .
v = Ae 2m [wacos (wat + @) — o Sin (wgt + <p)]

Let's apply the initial conditions to evaluate the integration constants: at t = 0,x =0 et v =
—0.6m/s
0 = Ae %sin (0 + @) comme A # 0
sinpg=0, ¢ =0
—0.6 = Ae °[w,cos (0 + @) — 0]
—0.6 = Ae~°[8.542cos (0) — 0]
A =-0.07002m
x(t) = —0.07002e 3751t 5in 8.542t m

Exercise 4 :



A uniform rod (of length | and negligible mass) carrying at its end a mass m considered as
point-like.

a) Equation of motion for m

The articulation at O is perfect, — implying a free system ©
(undamped). Fex is considered. '

The angular momentum theorem oy, is employed:

do, v RN

0= 1k = ZM(Fex /0) 1)
k: perpendicular to the vertical plane ; I = ml? : moment of inertia
[N . 2 .
M (F/0) : moment of external forces; 6 = % : angular acceleration.

We calculate the moment of P :

—

M (P/0) = OMAP = |OM||P|sin (OM, P)k
OM = U,
P= mg cosb. l_fr — mgsin0 179
So: M (13/0) = —mglsindk
Substituting this into equation (1), we obtain:
16 = —mglsin® , For small amplitude oscillations ( sin@=~ 6)
We divide by I = ml? (moment of inertia for a point mass, where | represents the distance

between the mass and the axis of rotation (see Huygens' theorem for other shapes)
Thus, we get : @ +%H: 0

This is a second-order differential equation of the form:

6 +w20=0 where w0=\/% ,

The general expression for 0(t) is in the form:

0(t)=Acos(\/%t+ (p)

b) The rod is subjected to an external force F

Wehave: M (P /0)+M (F /0) =16k (2)

Lt SE L o

16F = (OMAP + 0ANF). R}
F = FUi, et 04 = al,



Let's calculate the moment of F :
M (F/0) = OAAF = |0A||F|sin (04, F)k
Since F is perpendicular to the rod at point A (i.e . F L 04 = sin(04, F) = 1)
So M (F/0)= aFk
Substituting into (2) and dividing by I, the equation of motion becomes:

. g, aF
0+l49—ml2

This is a second-order differential equation with a forcing term (forced system).

c) LaThe mass is subjected to a viscous friction force F]Z_:

16k = (OMAP + OMAF;).k 3)
Where F; = —c?¥ olu ¥ : represents a linear velocity tangential to the trajectoryet Ff’ is
perpendicular to the rod at point M (i.e F; 1. OM which implies sin (OM, F;) = 1)
Let's calculate the moment of F; :
M (F; /0)=0M ~F; =|0M||F;|sin (OM,F,)k
3 (F; /0)=0M 1~ cih
So: M (F; /0) = —cl26k
We have x = [0 (knowing that for small amplitude oscillations, | represents the radius of the

arc). The velocity v =10
Substituting into equation (3) and dividing by J, the equation of motion becomes:
g

i+—6+20=0
m l

This is a second-order differential equation of the form:
6 +210 + w36=0

w2 = wi — A?

With w, = JwZ — 12 = % < ((indicating a damped free system).).

"~ am?
The general expression for 0(t) is in the form:

At) = Aecos(wat+ ¢ )



Exercise 5 :

a) The equation of motion for the mass W e i
At equilibrium : YF=0
PiF4F=0 & b
mg — ki Alg— k, Aly = 0

mg — (k; + ky)Al; = 0 (D Ti T

In motion: YE,=my
P+F.,+F,+F() =my |

Fo=T, , Fro=T, e

mi = mg — ky (Al +x) — k, (Aly + x) + F(t)

After using the equilibrium condition (equation 1), the equation becomes:
mi = —(ky +ky; )x+F(t)

Dividing by m:
ki +k 0.2
X+ Mx = —-zsin3t
m m
Given that m=10kg k, = 30X, k, = 70>
m m
the equation becomes: X+ 10x = 0.02sin3¢t....ccccccecevreeceenne (*)

b) The general solution of this differential equation (*) is in the form:
xg(8) = xp(t) + x,(t)
Where x;,(t) (t) is the homogeneous solution of the equation without the forcing term (*):
X+10x =0
This has the form: X + ofx = 0
By identification, we obtain:
2 =10 = 0, = V10 rad/s
xp(t)=Acos(wy t + @)
x,(t)=A cos(\/ﬁ t+ <p)
And x,(t) is the particular solution with the same form as the excitation force:

xp(t) = Bsin (3t + 6)



To determine x,,(t) complex numbers are used:
xp t) = (Bej(3t+9)) = BeJ3t

The expression B = Be/?represents the complex amplitude of the oscillator. Here:

e B is the magnitude (module) of the complex amplitude,
e 0 isthe argument of the complex amplitude.

For the excitation force, we obtain: Im(0.02e/3%)

x, (t)isthe particular solution of the equation (*) : X + 10x = 0.02sin3t

and its derivatives are given as:

X%p(t) = 3jBes*, %,(t) = —9BeS3", j2 = —1

Now, we substitute x, (t), x,(t), and X,(t) into the equation (*):
—9B e/3t +10B /3t = 0.02e/3¢
B =0.02
Bisreal, so |B| = B =0.02
(B has no imaginary part. In this case, the complex amplitude is purely real, and its magnitude

|B| is equal to its real part B, which is 0.02).

_ImB 0 _ 0
" ReelB  0.02

tgo
tgd =0=>0=0
x,(t) = 0.02 sin3t

xg(8) = xp(t) + x,(0)
xy(6) = Acos(vV10 t + ) + 0.02 sin3t

x = 5cm

att=0, the initial conditions are: { 5 =0

yielding:
xg(t) = A cos(\/ﬁ t+ <p) + 0.02 sin3t

x,(t) = —AV10sin(v/10 t + ¢) + 0.02x3. cos3t

x(0) = Acosp = 0.05 (1)
{x(O) = —AV10sin(p) + 0.06 =0  (2)



@ _ 310 _ = 0
) = tgp = — 0.379 = ¢ = 20.78

According to equation (1), the amplitude A is determined by:

0.05
A=
cosQ

= 5.35cm

Therefore, the general solution for the motion of the system x,(t) is given by:

x4(t) = 5.35 cos(\/ﬁ t+ 0.36) + 2sin3t  [cm]

Exercise 6 :

a) The natural frequency of the system's oscillations:

- -

YF=mjy = my=P+R+E
The projection of the movement in x is: mX = —kx
mi+kx =0
Dividing by m: F42x =0

It is in the form: ¥+ ojx =0

By identification, we obtain: w§ = % = wg = \/E

Numerical applications : ®, = /# = 30rad/s
b) x(t) = Acos(wy t + @)

at=0 {xx:fc(;n

x(t) = Acos(og t+ @)
x(t) = —Awg sin(wg t + @)

{x(O) = Acosp = 4cm (1)
x(0) = —Awgy sin(p) =0 (2)

(2)=>sing=0=¢=0

4
cos0

=4cm

According to (1): A=

x(t) = 4cos30t [cm]

>E

Il
3
<



my=P+R+F+ F,
mi = —cx — kx

mi+cx+kx=0

Dividing by m: i+<i+Lx=0
m m
Itis in the form: % + 2Ax + oox =0

By identification, we obtain:

c C k k
2l=—>)h=—, 0t =+—> 0= |—
m 2m m m

The damped natural frequency:

w? = wi — 12

v =0}~ (,,)

C 2
(ﬂ) =w3—w§=c=2m’w§—wg
c=2 /wg — w? = 24/9x102 — 5.452 = 59 N.s.m ™!

d)The logarithmic decrement:

2

6 = AT,
= ;- 2t=34
e) System quality factor
2r 21 s oo 30 30
Q:1—e-26:1—1+2,1Ta:,1Ta:ﬁ:g:5:0'50

For weak friction
f) Calculation of x(¢t) :

x(t) = Ae ™ cos(w, t + @)

x(0) =Acosp =2
x(100T,) = Ae *10%%a cos(w, 100T, + ¢)
x(100T,) = Ae~1%%% cos(2m(100) + ¢)
x(100T,) = Ae190%34 cos ¢
x(1007T,) = 273400 = 0 =0



Exercise 7 :

In (ﬁ> —In (E) _ 2™ 7= 04179

)~ "\1) T i

a) If the damping ratio ¢ is doubled

X2

2 2w (0,8358
In (Xl) _4m Cnouveau _ 7 ( ) — (x—l) = 14265,362

V1= CZowvean  J1-(0,8358)7  \x;

b) If the damping ratio ¢ is reduced by half

X 27 21 (0,20895 X
In (_1) — (nouveau — ( ) — (_1) = 3.8286
X2/ 1= Couwveau +/1— (0,20895)2 X2
Exercise 8 :
a) Points A and B are fixed.
We have the following system:
k k

| —
=" "
0 "2

To find the natural frequency of the oscillations of mass m, we use:

Zﬁzm?

By dividing by m, we obtain : X+ ;—k’x =0

=mik = —kx — kx =mi+2kx =0

It is a second-order differential equation of the form:
¥+ wix =0 with w, = /fn—k

b) Les points A et B sont mobiles (Points A and B are mobile).

Les points A et B sont animés de vibrations dans la direction des X de la forme :

(Points A and B undergo vibrations in the X direction of the form:)



x4(t) = —Ccosw,t et xg(t) = Ccosw,t

o LD [ N e A
EY = =
0 X
- Determining x(t)
Along the (OX) axis, we have:
mi = —k(x — x,) — k(x — xp)

mi + 2kx = kx, + kxg
By dividing by m, we obtain:  +2*x = ~x, +2-x, (1)
It is a second-order differential equation with a non-homogeneous term on the right-hand side
The motion equation x(t) of the mass can be obtained by superimposing these two
motions. The general solution x(t) is of the form:
xg(t) = xp(t) + x,(t)
Here x,(t) is the solution to the corresponding homogeneous equation

and x,(t) is a particular solution to the non-homogeneous equation

With :
2k

xp(t) = Acos(wg t + @) Wy = |—

The particular solution is written as:
xp(t) = xpl(t) + xpz(t)
Knowing that:
xp1(t) = Bycos (w1t + ¢1) et x,,(t) = Bycos (wyt + ¢3)
%1 (t) = —w;B; sin(w;t + @) ¥,1(t) = —w? Bycos (wit + ¢;)

X,2(t) = —w,B; sin(w,t + @) X,2(t) = —w3 B,cos (wyt + ¢3)



We substitute into the differential equation (1), and we find:

2B (w it + )+2kB (wit+ @) = a t+ ke t
wi Bycos(wit +¢1) + By cos(wyt + 1) = — ——coswy ——COSWy
2 2k kC kC
and, —w3 B, cos(w,t + @,) + —B, cos(w,t + ;) = — —coswit + —cosw,t
So: (—w? + %)Bl cos(wt + @) = — I:n—ccosa)lt + I:n—ccoswzt
2k kC kC
and, (—w3 +—)B; cos(w,t + @,) = — —Ccoswit + —coswst
By identification, we deduce that: ¢; =0 et @2 =0,
2 2k _ _kC _ _ __kC
And also : ( wi +— )31 =-—= B, = ol
( 2 4 2k ) B kC B kC
j— [ = —"— == —————
P2t ) T M T T 2k - wd)
So:
© = kC .
Xp1(t) = 2k — ?) COS wWq
© = kC .
Xpo (L) = 2k —ob) COSw,
The general solution x, (t) is written as:
t)=A 2k t+ kC t+ kC t
X = COS — — ————_-CO0Sw - COSw
g m )T k= wd) T 2k = w2) P02

- Lesvaleurs des pulsations de résonance

The values of w, and w, for which resonance will occur are those very close to

o = [
0=

If w1 = Wy = X1 (1) +xp2(t) =0 = x,(t) = Acos(wg t + @)

And the motion is harmonic with a pulsation o,.

Resonance Pulsations:

Resonance pulsations occur when the excitation frequency is equal to the natural frequency of
the system (w,). In other words, when w; or w, is equal to w,, the system resonates. The
values of w; and w, at which resonance occurs are therefore equal to w,.

For resonance, it is generally interesting to consider cases where w,0r w, is equal to wy.






