

Exercise 1: The equations of motion for a two-degree-of-freedom system subjected to an external force $F(t) = F_0 \cos \omega_{ext} t$ are given by

$$\begin{aligned}\ddot{x} + 10x - \theta &= F_0 \cos \omega_{ext} t \\ \ddot{\theta} + 10\theta - x &= 0\end{aligned}$$

- Determine the natural frequencies of the system.
- Determine the forced oscillations of the degrees of freedom.
- Write the general expressions for $x(t)$ and $\theta(t)$.

Exercise 2: A spring connecting two disks mounted on identical circular shafts is shown in Figure 1.

- Write the equations of motion for the system using the torsion angles θ_1 and θ_2 , of the shafts as coordinates for small angles θ .
- Determine the natural frequencies of the system.

Given: $k = 5$, $C = k_t = 90$, $J = 1$ and $a = 2$ (in MKSA system units).

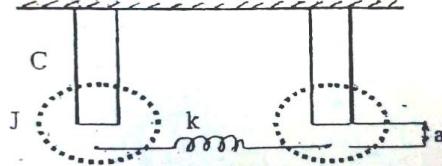


figure 1

k being the stiffness constant of the spring, $C = k_t$ the torsion constant of the shaft, and J the moment of inertia of the combined disk and shaft ensemble

Exercise 3: Consider the system shown in Figure 2.

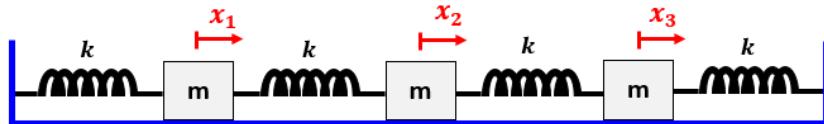


figure 2

- Write the equations of motion for the system.
- Determine the natural frequencies of the vibration modes of the system.
- Write the general expressions for x_1 , x_2 and x_3 .
- Assuming air friction on the body is fluid-type with a coefficient $c = 1 \text{ Nms}^{-1}$, determine the steady-state oscillations of the system if a force $F(t) = F_0 \sin \omega_{ext} t$ is applied to m_1 .

Exercise 4: A two-degree-of-freedom system is subjected to an external force $F(t) = F_0 \cos \omega_{ext} t$ (see figure 3).

- Determine $x_1(t)$, $x_2(t)$.
- Assuming fluid-type air friction with a coefficient $c = 1 \text{ Nms}^{-1}$, determine the steady-state oscillations of the system.

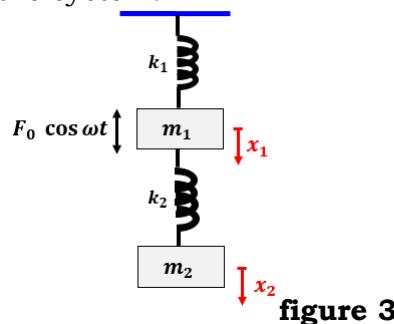


figure 3

Exercise 5: A chain of identical simple pendulums with mass m , length l , spaced by a , and coupled by springs with constant k is represented in Figure 4.

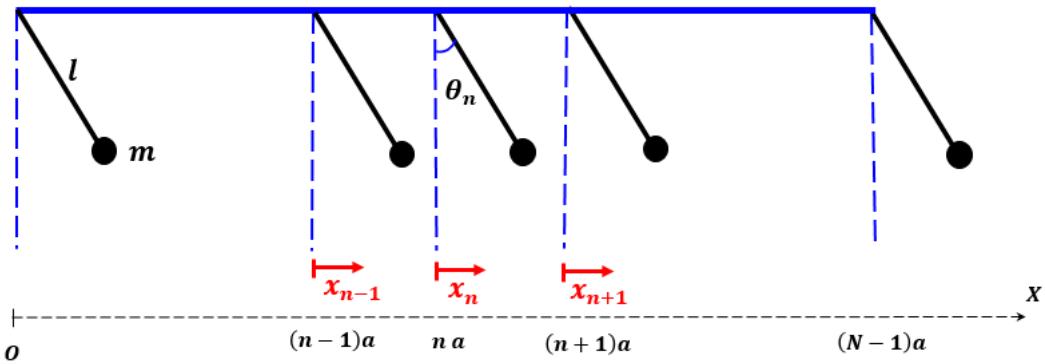


figure 4

a) Show that the equation of motion, in the vertical plane and for small angles θ , for the na x_n the pendulum bob is given by the equation:

$$\ddot{x}_n + \left(\frac{g}{l} + 2 \frac{k}{m} \right) x_n - \frac{k}{m} (x_{n-1} + x_{n+1}) = 0$$

Where x_n , x_{n-1} and x_{n+1} are displacements along the x-axis of masses na , $(n-1)a$ and $(n+1)a$ respectively, g is the acceleration due to gravity.

b) In a mode of pulsation ω , regardless of boundary conditions,, x_n is given by the equation:

$$x_n = (A \sin Kna + B \cos Kna) \cos(\omega t + \varphi)$$

Find the dispersion relation relating ω to K .

c) In the case where the extreme pendulums ($n = 0$ et $n = N - 1$) are fixed, write the boundary conditions, show that the expression for x_n reduces to:

$$x_n = A \sin Kna \cos(\omega t + \varphi)$$

d) Determine the possible values of K and the maximum and minimum frequencies of the vibration modes when extreme pendulums are fixed.