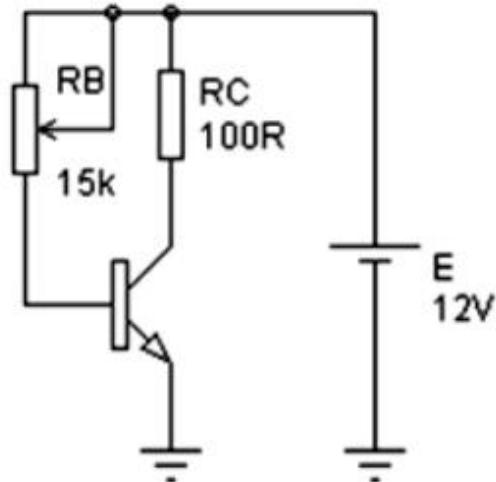


EXERCISES ON BIPOLAR TRANSISTOR

Exercise 1

1-The current gain of the transistor = 100, $V_{BE} = 0.7$ volt and $V_{CESat} = 0$ volt (saturation voltage). For $R_B = 10$ k. Calculate the currents I_B , I_C and the voltage V_{CE} .


2-Calculate the minimum base current I_{Bmin} to saturate the transistor and the corresponding value of the resistor R_B .

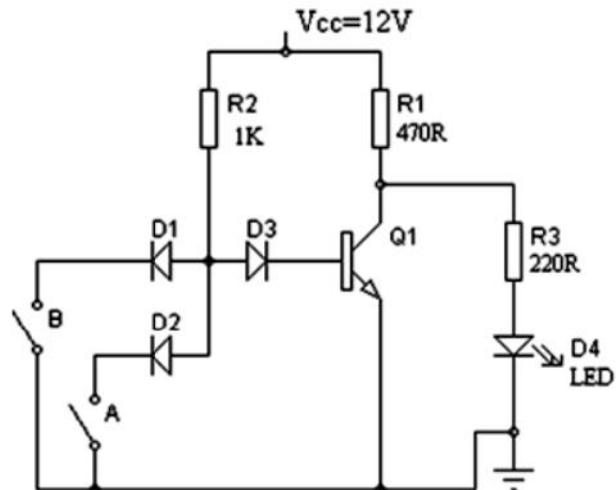
The NPN transistor is replaced by a PNP transistor which has the same characteristics.

3-Draw a diagram of the set up.

4-What is the voltage V_{BE} between base and emitter.

5-Repeat question 1

Exercise 2


The switches A and B are open.

- 1- Calculate the current I_B .
- 2- What is the state of the transistor ?
- 3- Is the LED on or off ? Justify the answer.
- 4- Calculate the voltage V_{PC} the common point of the 3 diodes D1, D2 and D3.

We close the switch A (B is open)

- 5- Calculate the voltage V_{PC} and the current I_B . What is the state of the transistor ?
- 6- Calculate the current I flowing through R_1 . What is the state of the LED ?
- 7- Calculate the voltage V_{CE} .
- 8- Complete the following table.

Switch B	Switch A	transistor State	LED State
open	open		
open	closed		
closed	open		
closed	closed		

$$= 100$$

$$V_D = 0.6 \text{ volt}$$

$$V_{BE} = 0.7 \text{ volt}$$

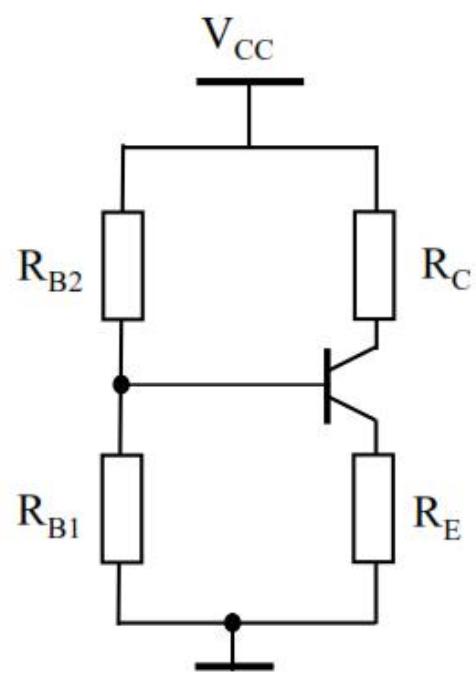
$$V_{D4} = 1.4 \text{ volt}$$

$$V_{CESat} = 0 \text{ volt}$$

Exercise 3

The figure below represents a biasing circuit from an NPN transistor using two base resistors.

Assume $\beta = 100$, $V_{CC} = 12$ volts, $R_C = 5$ k, $R_{B1} = 10$ k, and $V_{BE0} = 0.7$ volt.


1- We want to find an operating point ($V_{CE0} = 5$ Volts, $I_{C0} = 1$ mA).

Calculate the values of resistors R_1 and R_2 .

Plot the static load line and mark the operating point.

2- We keep the same resistor values as before and replace the transistor with one that has $\beta = 300$.

Calculate the coordinates of the new operating point. Conclude.

