

Series 02: Sequences and series of functions

Exercice 01 : Study pointwise and uniform convergence, in the domain I for the sequence functions $(f_n(x))_{n \geq 0}$:

- $f_n(x) = xe^{-nx}$, $I = [0, +\infty[$,
- $f_n(x) = \frac{1 - nx^2}{1 + nx^2}$, $I = \mathbb{R}$, and $I = [a, +\infty[$, $a > 0$,
- $f_n(x) = \cos\left(\frac{1 + nx}{2 + n}\right)$, $I = [-a, a]$, $a > 0$.

Exercice 02 : Let the sequence functions $(f_n(x))_{n \geq 0}$:

$$f_n(x) = \frac{2^n x}{1 + n2^n x^2} , x \in [0, 1].$$

- Calculate $\lim_{n \rightarrow \infty} \int_0^1 f_n(x) dx$ and $\int_0^1 \lim_{n \rightarrow \infty} f_n(x) dx$,
- Deduce that the convergence of $(f_n(x))_{n \geq 0}$ is not uniform.

Exercice 03 : Find the domain of convergence of the following series:

- $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^n}{\sqrt{n}}$,
- $\sum_{n=0}^{\infty} n^{(e^{-|x|}-2)}$
- $\sum_{n=0}^{\infty} \left(\frac{ne+1}{n+2}\right)^n (e^{-x})^n$

Exercice 04 : Show that the series $\sum_{n=0}^{\infty} f_n(x)$ converges normally in \mathbb{R}^+ :

- $f_n(x) = \sqrt{n}xe^{-n^2x}$,
- $f_n(x) = \frac{\cos(nx)}{n^2 + x}$.

Deduce the uniform and the absolute convergence of the series $\sum_{n=0}^{\infty} f_n(x)$.