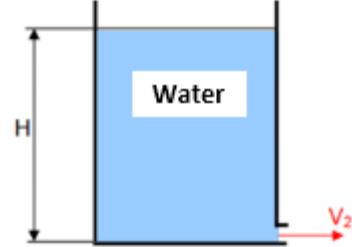


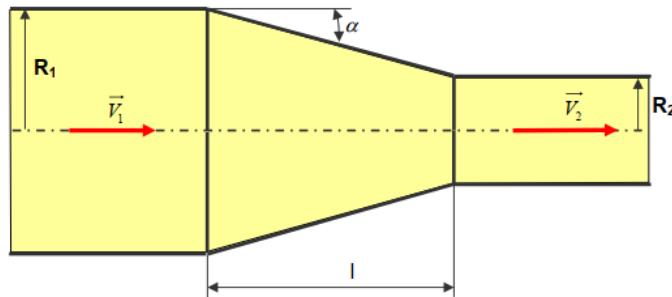
Exercise 1

We consider a reservoir filled with water to a height ($H = 3$) m, equipped with a small orifice at its base with a diameter ($d = 10$) mm.

- 1) By specifying the assumptions taken into account, apply Bernoulli's theorem to calculate the velocity (V_2) of the water flow.
- 2) Calculate the volumetric flow rate (Q_v) in (l/s) at the outlet of the orifice. We assume that ($g = 9.81$) m/s².



Exercise 2

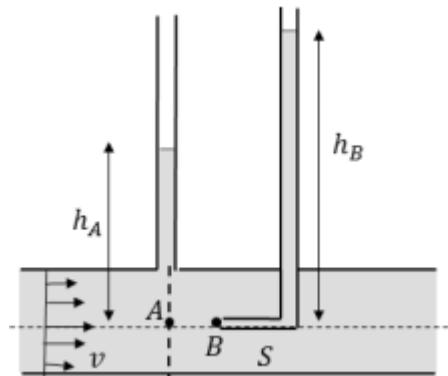


We want to accelerate the circulation of an ideal fluid in a pipe such that its velocity is multiplied by 4. To do this, the pipe has a converging section characterized by the angle α (see the diagram above).

- 1) Calculate the ratio (R_1/R_2).
- 2) Calculate ($R_1 - R_2$) as a function of (L) and α . Deduce the length (L). ($R_1 = 50$ mm, $\alpha = 15^\circ$)

Exercise 3

We use a Pitot tube to measure the speed of water at the center of a pipe. The stagnation pressure height (B) is 5.58 m and the static pressure at the wall in the pipe (A) is 4.65 m. What is the speed of the water? (We neglect the pressure losses between the two points A and B).



Solution 1

1) Flow velocity V_2 ? We apply Bernoulli's theorem with the following assumptions: $V_1 \approx 0$ because the level in the reservoir varies slowly ($V_1 \ll V_2$) et $P_1 = P_2 = P_{\text{atm}}$

$$\frac{V_2^2 - V_1^2}{2g} + \frac{P_2^2 - P_1^2}{\rho g} + (Z_2 - Z_1)$$

$$V_2 = \sqrt{2gh} = \sqrt{2 \times 9.81 \times 3} = 7.67 \text{ m/s}$$

2) Volumetric flow rate ?

$$Q_v = V_2 \times S$$

$$S = \frac{\pi \times D^2}{4} = \frac{3.14 \times (10 \times 10^{-3})^2}{4} = 7.87 \cdot 10^{-2} \text{ m}^2 \text{ N.A. } Q_v = 0.6 \text{ L/s}$$

Solution 2

1) We apply the continuity equation : $V_1 S_1 = V_2 S_2$, with : $S_1 = \pi \times R_1^2$ et $S_2 = \pi \times R_2^2$

Therefore : $\frac{R_1}{R_2} = \sqrt{\frac{V_2}{V_1}} = 2$ Because, $V_2 = 4 V_1$ according to the exercise data

$$2) \tan \alpha = \frac{R_1 - R_2}{l} \text{ et } R_2 = \frac{R_1}{2} \text{ So, } l = \frac{R_1 - \frac{R_1}{2}}{\tan \alpha} , l = \frac{R_1}{2 \tan \alpha} = 93.3 \text{ mm}$$

Solution 3

Hypothesis :

- Permanent uniform incompressible flow
- We consider an isobar surface between points A and B.
- In A : $P = P_A$ $V = V_A$ $Z = Z_A$
- In B : $P = P_B$ $V = 0$ (stagnation point, static equilibrium entry section of the tube) and $Z = Z_A = Z_B$
- According to Bernoulli's equation between A and B, we have:

Low distance AB

$$\left(\frac{P_A}{\rho g} + \frac{V_A^2}{2g} + z_A \right) = \left(\frac{P_B}{\rho g} + \frac{V_B^2}{2g} + z_B \right) \text{ with } z_A = z_B$$

No Energy loss

$$P_A + \frac{1}{2} \rho V_A^2 = P_B$$

According to the hydrostatics : $H_A = \frac{P_A}{\rho g}$ $H_B = \frac{P_B}{\rho g}$ (pseudo-static uniform permanent flow)
where, V_A is :

$$V_A = \sqrt{2g(H_B - H_A)} = \sqrt{2g(5.58 - 4.65)} = 4.85 \text{ (m/s)}$$