

Exercice 1

On considère la courbe caractéristique $I = f(U_D)$ d'une diode à jonction (Fig.4.14).

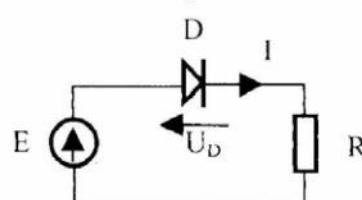


Fig.4.14

1. Déterminer la tension de seuil V_T de cette diode.
2. Soit un point M appartenant à la courbe caractéristique tel que $I_M = 100$ mA, trouver graphiquement la résistance dynamique de la diode en ce point.
3. Etablir l'équation permettant de linéariser la diode.
4. Cette diode est placée dans le circuit électrique suivant : (Fig.4.15)

On donne :

$$E = 3 \text{ V} \text{ et } R = 22 \Omega$$

Fig.4.15

Ecrire l'équation de la droite de charge $I = f(U_D)$. Tracer cette droite et en déduire les coordonnées du point de fonctionnement.

Exercice 2

On se propose d'étudier le circuit ci-dessous : (Fig.4.16)

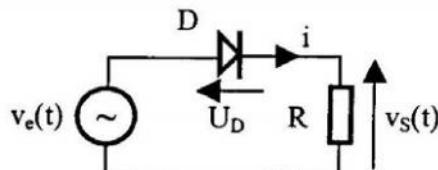


Fig.4.16

D est une diode au Silicium dont la caractéristique est linéaire avec $V_\gamma = 0.5\text{V}$ et $r_d = 5\ \Omega$.

La tension d'entrée est de la forme : $v_e(t) = V_M \sin \omega t$

1. Déterminer l'expression du courant $i(t)$.
2. Tracer sur le même graphe $v_D(t)$ et $i(t)$.
3. Calculer l'angle de déblocage θ (angle pour lequel la diode passe de l'état bloqué à l'état passant) pour $V_M = 2\text{ V}_\gamma$ puis $V_M = 10\text{ V}$.
4. Comparer les valeurs trouvées avec celles que donnerait une diode au Germanium de $V_\gamma = 0.3\text{ V}$.
5. Expliquer ce qui se passe quand on branche un condensateur C en parallèle avec la résistance R.
6. Tracer l'allure de la courbe $i(t)$ dans ce cas.

Exercice 3

On considère le circuit électrique donné par la Fig.4.17

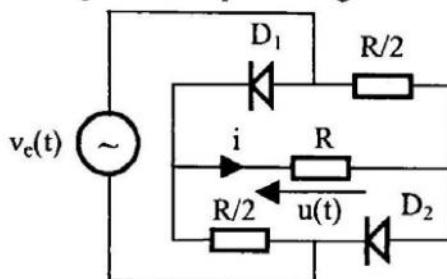


Fig.4.17

Les diodes D_1 et D_2 sont supposées parfaites ($V_\gamma = 0\text{ V}$ et $r = 0\ \Omega$).

1. Calculer u dans les deux cas suivants :
 - a. $V_e = +10\text{ V}$;
 - b. $V_e = -10\text{ V}$.
2. Tracer u en fonction du temps si $v_e(t)$ est sinusoïdale de valeur maximale $V_M = 10\text{ V}$.
3. On remplace les deux résistances $R/2$ par deux diodes D_3 et D_4 . La tension $v_e(t)$ est toujours sinusoïdale, que devient l'allure de la tension $u(t)$?

Exercice 4

On suppose que les circuits proposés par les Fig.4.18 et Fig.4.19 sont alimentés par des tensions sinusoïdales $v_{ei}(t) = V_M \sin \omega t$. ($i = 1 ; 2$)

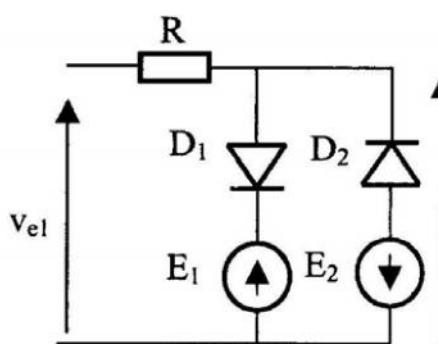


Fig.4.18

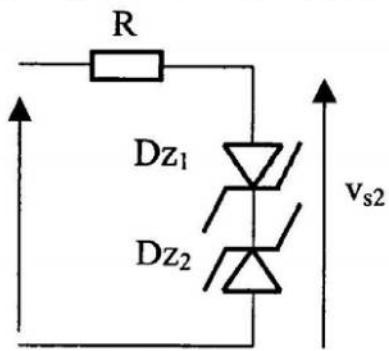


Fig.4.19

On suppose aussi que toutes les tensions E_1, E_2, V_{Z1} et V_{Z2} sont inférieures à V_M . Les diodes D_1, D_2, D_{Z1} et D_{Z2} sont parfaites ($V_{yi}=0, r_D=r_Z=0$).

1. Expliquer le fonctionnement de chaque montage.
2. Tracer l'allure de $v_{S1}(t)$, $v_{S2}(t)$ ainsi que $v_{S1} = f(v_{e1})$ et $v_{S2} = f(v_{e2})$.
3. Quelle est la fonction assurée par chaque circuit ?

Exercice 5

La Fig.4.20 représente une diode D dans un circuit comportant deux sources de tension. La caractéristique de cette diode est donnée par la Fig.4.21.

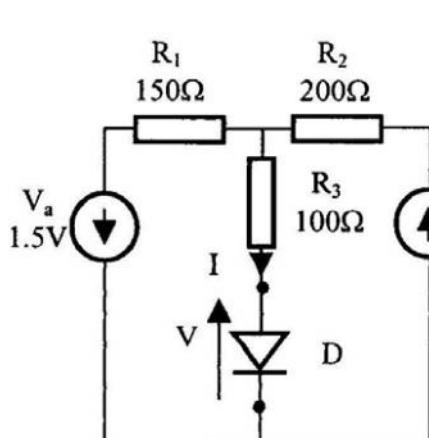


Fig.4.20

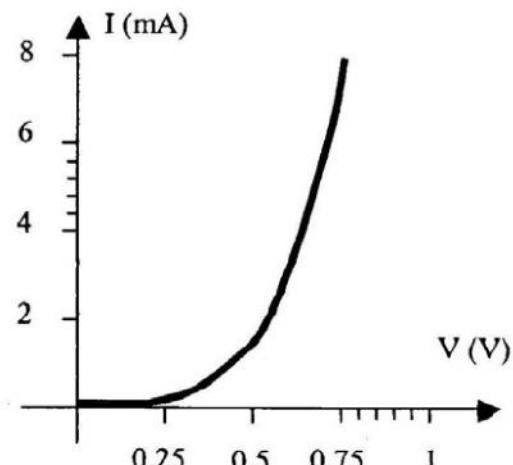


Fig.4.21

1. Déterminer l'intensité du courant I en modélisant la diode.
2. Tracer la droite de charge $I = f(V)$.
3. Quel est alors le point de fonctionnement ? Comparer la solution graphique et celle donnée par le calcul.