Series 1

Exercise 1:

1. Show that : $\forall x, y \in \mathbb{R}^{2}, x^{2}+y^{2}=0 \Longleftrightarrow x=y=0$.
2. Show that : $x \neq y \Longrightarrow(x+1)(y-1)+(x-1)(y+1)$.
3. Show that : n is prime $\Longrightarrow n=2$ or n is odd.

Exercise 2 :

1. Show by the absurd that : $\forall x \in \mathbb{R}: x \notin \mathbb{Q} \Longrightarrow 1+x \notin \mathbb{Q}$.
2. Show by recurrence : $\forall n \geq 0, \quad 6^{n}+9$ is a multiple of 5 .

Exercise 3 :

Consider the following four assertions :
(a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \quad x+y>0$.
(b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \quad x+y>0$.
(c) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \quad x+y>0$.
(d) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \quad y^{2}>x$.

1. Are the assertions a, b, c and d true or false?
2. Give their negation.

Exercise 4 :

In \mathbb{C}, we define the relation \mathcal{R} by :

$$
z \mathcal{R} z^{\prime} \Longleftrightarrow|z|=\left|z^{\prime}\right| .
$$

Show that \mathcal{R} is an equivalence relation.

Exercise 5 :

Let the application $f: \mathbb{R} \longmapsto \mathbb{R}$ defined by $f(x)=x^{2}+1$. Consider the sets $A=[-3,2], \quad B=[0,4]$.

1. Compare the sets $f(A \cap B)$ and $f(A) \cap f(B)$.
2. What condition must f satisfy for $f(A \cap B)=f(A) \cap f(B)$.

Exercise 6 :

1. Let $f: \mathbb{R} \longmapsto \mathbb{R}$ be the application defined by :

$$
f(x)= \begin{cases}1 & x<0 \\ 1+x & x \geqslant 0 .\end{cases}
$$

Determine the following sets : $\left.\left.f(\mathbb{R}), f^{-1}(0), f^{-1}(1), f^{-1}(-1), f^{-1}(] 1,2\right]\right)$.
2. Let $g: \mathbb{R} \backslash\left\{\frac{1}{2}\right\} \rightarrow \mathbb{R}^{*}$ be the application such that :

$$
g(x)=\frac{9}{2 x-1} .
$$

Show that g is a bijection. Determine its reciprocal application.

Additional exercises

Exercise 1 : Show that : $[n$ is odd $] \Longleftrightarrow\left[n^{2}\right.$ is odd $]$

Exercise 2 :

1. Let be the application $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ and $A=[-1 ; 4]$. Determine :
(a) The direct image of A by f.
(b) The reciprocal image of A by f.
2. What is the direct image of sets : $\mathbb{R},[0,2 \pi],\left[0, \frac{\pi}{2}\right]$, and the reciprocal image of sets $[0,1],[3,4],[1,2]$ by application $\sin (x)$.
