BADJI-MOKHTAR ANNABA UNIVERSITY FACULTY OF TECHNOLOGY PHYSICS 1 MODULE

Series 1: Dimensional equations

Exercise 1:

1- Determine the dimensional equations of the following quantities and give their units in the international system (SI): The bulk density ρ - The intensity of a force *F*- The work *W*- The power *P*- The electrical charge *Q*- the electrical tension *U*, The electrical resistance *R*- The capacitance of a capacitor *C*.

2- Verify the homogeneity of the following expressions: $\frac{1}{2}mv^2 - mgh - Ri^2t - F\ell \cos\theta$.

Exercise 2:

Stokes' formula F= $6\pi a\eta v$ gives the resistive force exerted on a sphere of radius *a*, velocity *v*, in a viscous fluid of viscosity coefficient η .

Determine the dimensional equation for the coefficient η .

Exercise 3:

The speed limit reached by a weighted parachute is a function of its weight P and its surface area S is :

$$v = \sqrt{\frac{P}{KS}}$$

- Give the dimensions of the constant *k*.

Exercise 4:

The density ρ of a cylinder of mass *m*, radius *R* and length *l* is given by the following relationship:

$$\rho = \frac{m^{\alpha}}{\pi \, l^{\beta} R^2}$$

1- Using the dimensions, find the two constants α and β .

2- Deduce the exact expression for the bulk density ρ .

Exercise 5:

The limiting velocity v of a sphere of radius R and density ρ' falling into a viscous medium of viscosity coefficient η and bulk density ρ is given by the formula :

$$v = \frac{1}{9} \frac{R^2 g(\rho' - \rho)}{\eta}$$

where g is the acceleration of gravity. The dimensional equation for the coefficient η is: ML⁻¹T⁻¹.

-Verify the consistency of this formula.

Exercise 6 :

The electric field E created by a charge q is given by the relation $E = \frac{1}{4\pi \varepsilon_0} \frac{q}{r^2}$ and the

magnetic field B is given by the relation $B = \frac{\mu_0 qv}{4\pi r^2}$.

Where *r* is distance and *v* is velocity. Remember that the Lorentz force is given by the relation F = qvB.

- Give the dimensions of ε_0 and μ_0 .
- Verify the following relationship : [$\epsilon_0 \mu_0 c^2$] =1

Exercise 7:

Calculate the relative uncertainty of the capacity measurement (C) of a capacitor equivalent to two mounted capacitors C_1 and C_2 :

a- in parallel

b- in series

Exercise 8:

Let the relation: $y = y_0 e^{-\omega t}$

Calculate the absolute uncertainty of y as a function of the absolute uncertainties: $\Delta \omega$, Δt , Δy_0

Exercise 9 : (Homework)

The period of oscillation T, of a torsion pendulum consisting of a sphere of mass m and radius R, is written :

$$T = \frac{1}{2\pi} \sqrt{\frac{\frac{2}{5}mr^2}{c}}$$

- Find the dimension of the constant c.

- Calculate the relative uncertainty of c $\left(\frac{\Delta c}{c}\right)$, considering that: T= (0.700±0.001)s, m=(0.960±0.001)Kg and R=(0.072±0.001)m.