University of Badji Mokhtar-Annaba Faculty of Engineering Sciences Department of Science and Technology, 2nd Year <u>Pr. L. BECHIRI</u> Module: Physics 3

2024-2025

TD3

Exercise 1: The equations of motion for a two-degree-of-freedom system subjected to an external force $F(t) = F_0 \cos \omega_{ex} t$ are given by

$$\ddot{x} + 10x - \theta = F_0 \cos \omega_{ex} t$$
$$\ddot{\theta} + 10\theta - x = 0$$

a) Determine the natural frequencies of the system.

b) Determine the forced oscillations of the degrees of freedom.

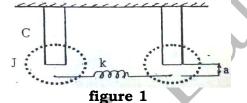
c) Write the general expressions for x(t) and $\theta(t)$.

Exercise 2: A spring connecting two disks mounted on identical circular shafts is shown in Figure 1.

a) Write the equations of motion for the system using the torsion angles θ_1 and θ_2 , of the shafts as coordinates for small angles θ .

b) Determine the natural frequencies of the system.

Given: k = 5, $C = k_t = 90$, J = 1 and a = 2 (in MKSA system units).



k being the stiffness constant of the spring, $C = k_t$ the torsion constant of the shaft, and *J* the moment of inertia of the combined disk and shaft ensemble

Exercise 3: Consider the system shown in Figure 2.

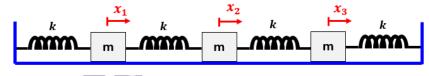


figure 2

a) Write the equations of motion for the system.

b) Determine the natural frequencies of the vibration modes of the system.

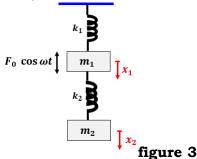
c) Write the general expressions for x_1 , x_2 and x_3 .

d) Assuming air friction on the body is fluid-type with a coefficient $c = 1Nms^{-1}$, determine the steady-state oscillations of the system if a force $F(t) = F_0 \sin \omega_{ex} t$ is applied to m1.

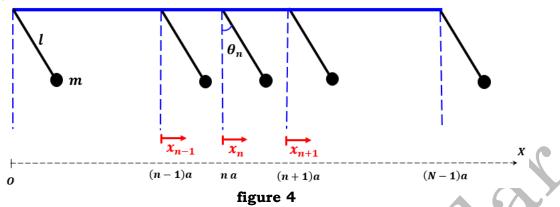
Exercise 4: A two-degree-of-freedom system is subjected to an external force $F(t) = F_0 \cos \omega_{ex} t$ (see figure 3).

a) Determine $x_1(t), x_2(t)$.

b) Assuming fluid-type air friction with a coefficient $c = 1Nms^{-1}$, determine the steady-state oscillations of the system.



Exercise 5: A chain of identical simple pendulums with mass m, length l, spaced by a, and coupled by springs with constant k is represented in Figure 4.



a) Show that the equation of motion, in the vertical plane and for small angles θ , for the *na* x_n the pendulum bob is given by the equation:

$$\ddot{x_n} + \left(\frac{g}{l} + 2\frac{\kappa}{m}\right)x_n - \frac{\kappa}{m}(x_{n-1} + x_{n+1}) = 0$$

Where x_n , x_{n-1} and x_{n+1} are displacements along the x-axis of masses na, (n-1)a and (n+1)a respectively, g is the acceleration due to gravity.

b) In a mode of pulsation ω , regardless of boundary conditions,, x_n is given by the equation:

$$x_n = (A \sin Kna + B \cos Kna) \cos(\omega t + \varphi)$$

Find the dispersion relation relating ω to *K*.

c) In the case where the extreme pendulums (n = 0 et n = N - 1) are fixed, write the boundary conditions, show that the expression for x_n reduces to:

$$x_n = A \sin K n a \cos(\omega t + \varphi)$$

d) Determine the possible values of *K* and the maximum and minimum frequencies of the vibration modes when extreme pendulums are fixed.