Series 02: Sequences and series of functions

Exercice 01 : Study pointwise and uniform convergence, in the domain I for the sequence functions $(f_n(x))_{n\geq 0}$:

• $f_n(x) = xe^{-nx}, \quad I = [0, +\infty[,$

•
$$f_n(x) = \frac{1 - nx^2}{1 + nx^2}$$
, $I = \mathbb{R}$, and $I = [a, +\infty[, a > 0$

•
$$f_n(x) = \cos\left(\frac{1+nx}{2+n}\right), \quad I = [-a,a], \ a > 0.$$

Exercice 02 : Let the sequence functions $(f_n(x))_{n\geq 0}$:

$$f_n(x) = \frac{2^n x}{1 + n2^n x^2}$$
, $x \in [0, 1].$

- Calculate $\lim_{n \to \infty} \int_0^1 f_n(x) dx$ and $\int_0^1 \lim_{n \to \infty} f_n(x) dx$,
- Deduce that the convergence of $(f_n(x))_{n\geq 0}$ is not uniform.

Exercice 03 : Find the domain of convergence of the following series:

- $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^n}{\sqrt{n}},$
- $\sum_{n=0}^{\infty} n^{(e^{-|x|}-2)}$
- $\sum_{n=0}^{\infty} \left(\frac{ne+1}{n+2}\right)^n \left(e^{-x}\right)^n$

Exercice 04 :Show that the series $\sum_{n=0}^{\infty} f_n(x)$ converges normally in \mathbb{R}^+ :

f_n(x) = √nxe^{-n²x},
f_n(x) = cos(nx)/n² + x.

Deduce the uniform and the absolute convergence of the series $\sum_{n=0}^{\infty} f_n(x)$.